Math 2802 N1-N3 Worksheet 10

April 6th, 2018

1. Let $Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-x_{3}^{2}+3 x_{1} x_{2}-4 x_{1} x_{3}+x_{2} x_{3}$. Give the associated matrix to the quadratic form $Q(x)$.
2. Classify the following quadratic functions according to: positive/negative definite, positive/negative semidefinite or indefinite.
a) $Q\left(x_{1}, x_{2}, x_{3}\right)=-15 x_{3}^{2}$,
b) $Q\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}-10 x_{3}^{2}$,
c) $Q\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+3 x_{2}^{2}+10 x_{3}^{2}$.
3. Let A be a 2×2 matrix with eigenvalue λ. If the information of A is that $A=\left(\begin{array}{cc}a & b \\ * & *\end{array}\right)$. Then one eigenvector with eigenvalue is $\binom{b}{\lambda-a}$. Why?
4. The graph of the equation $8 x_{1}^{2}+6 x_{1} x_{2}=8$ corresponds to an hyperbola. Find a change of variables that removes the cross-product term from the equation and give the formula of the hyperbola using the new variables.
5. Compute the spectral decomposition for $A=P D P^{-1}$ with

$$
P=\left(\begin{array}{cc}
.6 & .8 \\
.8 & -.6
\end{array}\right) \quad D=\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

6. Find the orthogonal diagonalization $A=P D P^{-1}$ of A below (which has distinct eignevalues $-4,4,7$). Write down explicitly both P and P^{-1}.

$$
A=\left(\begin{array}{lll}
1 & 1 & 5 \\
1 & 5 & 1 \\
5 & 1 & 1
\end{array}\right)
$$

7. Consider $A=\left(\begin{array}{ccc}4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4\end{array}\right)$ and $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
a) Find two orthogonal eigenvectors of A with eigenvalue 5 .
b) Find an orthogonal diagonalization of A (Hint: v is eigenvector of A)
