Math 2802 N1-N3 Worksheet 11

Solutions

1. Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if it is ever false. The matrices here are $n \times n$.
a) $\quad \mathbf{F} \quad$ If A is symmetric and has an eigenvalue λ, then there is a unitlength vector x such that $\lambda \leq x^{T} A x$.
b) $\mathbf{T} \quad \mathbf{F} \quad$ If A is an $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then the condition number equals $\lambda_{1} / \lambda_{n}$.

Solution.

a) True. Let $Q(x)=x^{T} A x$, then the maximum value of $Q(x)$ constrained to vectors of length one ($x^{T} x=1$) is attained by the unit-length eigenvector of the largest eigenvalue of A. Call this largest eigenvalue λ_{1} and such eigenvector v_{1}. Then

$$
v_{1}^{T} A v_{1}=v_{1}^{T}\left(\lambda_{1} v_{1}\right)=\lambda_{1}\left(v_{1}^{T} v_{1}\right)=\lambda_{1} \geq \lambda
$$

b) False. The condition number is defined in terms of the singular values; these are ordered from largest to smallest $\sigma_{1} \geq \cdots \sigma_{n}$ and the condition number equals σ_{1} / σ_{n}. However, the singular values correspond to the square roots of the eigenvalues of $A^{T} A$.
2. For the quadratic functions below, find the vector u attaining the maximum value of $Q(x)=x^{T} A x$ among vector of unit length; i.e. constrained to have $x^{T} x=1$.
a) $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2\end{array}\right)$
b) $A=\left(\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right)$

Solution.

a) The characteristic polynomial is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(3-\lambda)(2-\lambda)^{2}+2+2-[(2-\lambda)+4(3-\lambda)+(2-\lambda)] \\
& =-\lambda(\lambda-5)(\lambda-2)
\end{aligned}
$$

An eigenvector of 5 is $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Thus, the maximum value of $Q(x)$ for unit-length vectors is 5 and a unit vector attaining this value is $u=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
b) The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=(3-\lambda)^{2}-4=(\lambda-5)(\lambda-1)
$$

An eigenvector of 5 is $\binom{1}{-1}$. Thus, the maximum value of $Q(x)$ for unit-length vectors is 5 and a unit vector attaining this value is $u=\frac{1}{\sqrt{2}}\binom{1}{-1}$.
3. Find the singular value decomposition $A=U \Sigma V^{T}$ of $A=\left(\begin{array}{ll}7 & 6 \\ 0 & 0 \\ 6 & 2\end{array}\right)$

Solution.

Step zero: Compute $A^{T} A$, its eigenvalues and eigenvectors (listed in decreasing order of eigenvalues). Since the eigenvalues have all multiplicity one; we already have an orthogonal diagonalization of $B=A^{T} A=P D P^{T}$.

$$
A^{T} A=\left(\begin{array}{cc}
85 & 54 \\
54 & 40
\end{array}\right)=\left(\begin{array}{cc}
3 \sqrt{13} & -2 \sqrt{13} \\
2 \sqrt{13} & 3 \sqrt{13}
\end{array}\right)\left(\begin{array}{cc}
121 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
3 / \sqrt{13} & 2 / \sqrt{13} \\
-2 \sqrt{13} & 3 \sqrt{13}
\end{array}\right)
$$

The singular values of A are, thus, $\sigma_{1}=\sqrt{121}=11$ and $\sigma_{2}=\sqrt{4}=2$.
Step one: Let $V=P$; and let the column vectors of V be v_{1}, v_{2}.

$$
v_{1}=\frac{1}{\sqrt{13}}\binom{3}{2} \quad v_{2}=\frac{1}{\sqrt{13}}\binom{-2}{3}
$$

Step two: Let $U=\left(\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right)$ as follows. Use the non-zero singular values to define vectors in \mathbf{R}^{3} :

$$
\begin{aligned}
& u_{1}=\frac{A v_{1}}{\sigma_{1}}=\frac{1}{11 \sqrt{13}}\left(\begin{array}{c}
33 \\
0 \\
22
\end{array}\right)=\frac{1}{\sqrt{13}}\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right) \\
& u_{2}=\frac{A v_{2}}{\sigma_{2}}=\frac{1}{2 \sqrt{13}}\left(\begin{array}{c}
4 \\
0 \\
-6
\end{array}\right)=\frac{1}{\sqrt{13}}\left(\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right)
\end{aligned}
$$

And complete the basis with a unit vector

$$
u_{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

If this selection of u_{3} is not straigth-forward, then Gram-Schmidt might be useful.
(Note that for singular values that are zero, the definition $\frac{A v_{1}}{\sigma_{1}}$ has a division by zero, so it would not be defined.)

Step four: Let Σ be a matrix with same number of rows and columns of A (this will not always be a diagonal matrix); fill in the 'diagonal' entries with the non-zero singular values and leave the rest of the entries equal zero.

$$
\Sigma=\left(\begin{array}{cc}
11 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right)
$$

