Math 2802 N1-N3 Worksheet 11

April 20th, 2018

1. Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if it is ever false. The matrices here are $n \times n$.
a) $\mathbf{T} \quad \mathbf{F} \quad$ If A is symmetric and has an eigenvalue λ, then there is a unitlength vector x such that $\lambda \leq x^{T} A x$.
b) $\mathbf{T} \quad \mathbf{F}$ If A is an $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, then the condition number equals $\lambda_{1} / \lambda_{n}$.
2. For the quadratic functions below, find the vector u attaining the maximum value of $Q(x)=x^{T} A x$ among vector of unit length; i.e. constrained to have $x^{T} x=1$.
a) $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2\end{array}\right)$
b) $A=\left(\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right)$
3. Find the singular value decomposition $A=U \Sigma V^{T}$ of $A=\left(\begin{array}{ll}7 & 6 \\ 0 & 0 \\ 6 & 2\end{array}\right)$
