Math 2802 N1-N3 Worksheet 4 Solutions

- **1.** Consider a transformation $T : \mathbf{R}^n \to \mathbf{R}^m$. Choose the correct answer and give examples in the follow up questions.
 - a) We guarantee that
 - *T* is not onto if *m* > *n*.
 Follow up: Provide 2 examples of *T* : R³ → R² where *i*) *T* is onto *ii*) *T* is not onto.
 - *T* is not onto if *m* < *n*.
 Follow up: Provide 2 examples of *T* : R² → R³ where *i*) *T* is onto *ii*) *T* is not onto.
 - **b)** We guarantee that
 - *T* is not one-to-one if m > n. **Follow up:** Provide 2 examples of $T : \mathbb{R}^3 \to \mathbb{R}^2$ where *i*) *T* is one-to-one *ii*) *T* is not one-to-one.
 - *T* is not one-to-one if m < n. **Follow up:** Provide 2 examples of $T : \mathbb{R}^2 \to \mathbb{R}^3$ where *i*) *T* is one-to-one *ii*) *T* is not one-to-one.

Solution.

a) We guarantee that *T* is not onto if m > n: the corresponding matrix *A* has more rows than columns, thus all echelon forms have rows of zeros. We can find vectors *b* which would make any system Ax = b inconsistent.

Examples:
$$T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$$
 is onto
 $T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$ is not onto.

b) We guarantee that *T* is not one-to-one if m < n: the corresponding matrix *A* has more columns than rows, thus all echelon forms have non-pivot columns. Those columns will correspond to free variables that provides, for consistent systems Ax = b, infinitely many solutions.

Examples:
$$T\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$$
 is one-to-one.
 $T\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 2\\ 2 & 4\\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix}$ is not one-to-one.

2. Let
$$A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 and $A_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$.

a) Compute the inverse of A_3 using the algorithm from class.

- **b)** Can you guess the inverse of A_4 ?
- c) Can you guess the inverse of the corresponding A_n ?

Solution.

a) Compute the inverse of A_3 using the algorithm from class. We place the augmented matrix ($A|I_3$) and row reduce (line between matrices is omitted).

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$Thus A_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

b) We can guess: a diagonal of ones and a 'second diagonal' of negative ones? (or preform the same algorithm)

$$A_4^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

If we guessed, then we have to verify that either

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} A_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

or

$$A_4 \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

c) In general, A_n^{-1} can be described as lower triangular matrices with a diagonal of ones and a 'second diagonal' of negative and the rest of entries equal to zero. (It can be proved by induction).

3. If we know that

$$A = \begin{pmatrix} 5 & 2 & -1/2 \\ -3/2 & -7/10 & 1/5 \\ -1/2 & -1/10 & 1/10 \end{pmatrix} \text{ and } A^{-1} = \begin{pmatrix} 1 & 3 & -1 \\ -1 & -5 & 5 \\ 4 & 10 & 10 \end{pmatrix}$$

Solve the system $Ax = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$.

Solution.

To solve the system we have to multiply the matrix equation with A^{-1} by the left $A^{-1}Ax = A^{-1}\begin{pmatrix} 1\\0\\-3 \end{pmatrix}$; since $A^{-1}A = I_3$ we can simply compute $x = A^{-1}\begin{pmatrix} 1\\0\\-3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & -1\\-1 & -5 & 5\\4 & 10 & 10 \end{pmatrix} \begin{pmatrix} 1\\0\\-3 \end{pmatrix} = \begin{pmatrix} 4\\-16\\-26 \end{pmatrix}$

4. Exercise 31 from section 2.5 For this problem, use the interactive row reducer to row reduce the matrix A (MATHLAB might use a permutated lower triangular matrix): http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/rrinter.html

Solution.

$$A = \begin{pmatrix} 4 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 4 & -1 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 4 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 \end{pmatrix}$$
$$L = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 4 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{15} & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{-1}{15} & \frac{-8}{28} & 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{-44}{15} & \frac{-8}{28} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{-74}{24} & \frac{-26}{89} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{-24}{89} & \frac{-4147}{48149} & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{-319}{1082} & \frac{-56977}{194370} & 1 \end{pmatrix}$$

	(4	-1	-1	0	0	0	0	0)	
U =	0	$\frac{15}{4}$	$\frac{-1}{4}$	-1	0	0	0	0		
	0	Ó	$\frac{56}{15}$	$\frac{-16}{15}$.	-1	0	0	0		
	0	0	0	$\frac{24}{7}$	$\frac{-2}{7}$	-1	0	0		
	0	0	0	Ó	$\frac{89}{24}$	$\frac{-13}{12}$	-1	0		
	0	0	0	0	0	1082	$\frac{-26}{80}$	-1		
	0	0	0	0	0	0	$\frac{930}{251}$	$\frac{-227}{209}$		
	0/	0	0	0	0	0	0	$\frac{359}{106}$	J	
A^{-1} ~	((0.30	0.09	0.10	0	.05	0.03	0.02	0.01	0.01
		0.09	0.30	0.05	0	.09	0.02	0.03	0.01	0.01
		0.09	0.05	0.33	0	.11	0.10	0.06	0.03	0.02
		0.05	0.09	0.11	0	.33	0.06	0.10	0.02	0.03
	´ (0.03	0.02	0.10	0	.06	0.33	0.11	0.09	0.05
		0.02	0.03	0.06	0	.10	0.11	0.33	0.05	0.09
		0.01	0.01	0.03	0	.02	0.09	0.05	0.30	0.09
	1	0.09	0.01	0.02	0	.03	0.05	0.09	0.09	0.30 <i>J</i>