Math 2802 N1-N3 Worksheet 4

Solutions

1. Consider a transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Choose the correct answer and give examples in the follow up questions.
a) We guarantee that

- T is not onto if $m>n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ where i) T is onto ii) T is not onto.

- T is not onto if $m<n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ where i) T is onto ii) T is not onto.
b) We guarantee that

- T is not one-to-one if $m>n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ where i) T is one-to-one ii) T is not one-to-one.

- T is not one-to-one if $m<n$.

Follow up: Provide 2 examples of $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ where i) T is one-to-one ii) T is not one-to-one.

Solution.

a) We guarantee that T is not onto if $m>n$: the corresponding matrix A has more rows than columns, thus all echelon forms have rows of zeros. We can find vectors b which would make any system $A x=b$ inconsistent.
Examples: $T\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is onto
$T\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is not onto.
b) We guarantee that T is not one-to-one if $m<n$: the corresponding matrix A has more columns than rows, thus all echelon forms have non-pivot columns. Those columns will correspond to free variables that provides, for consistent systems $A x=b$, infinitely many solutions.

$$
\begin{aligned}
& \text { Examples: } T\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} \text { is one-to-one. } \\
& T\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { is not one-to-one. }
\end{aligned}
$$

2. Let $A_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and $A_{4}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$.
a) Compute the inverse of A_{3} using the algorithm from class.
b) Can you guess the inverse of A_{4} ?
c) Can you guess the inverse of the corresponding A_{n} ?

Solution.

a) Compute the inverse of A_{3} using the algorithm from class.

We place the augmented matrix $\left(A \mid I_{3}\right)$ and row reduce (line between matrices is omitted).

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right) \\
& \text { Thus } A_{3}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

b) We can guess: a diagonal of ones and a 'second diagonal' of negative ones? (or preform the same algorithm)

$$
A_{4}^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

If we guessed, then we have to verify that either

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right) A_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

or

$$
A_{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

c) In general, A_{n}^{-1} can be described as lower triangular matrices with a diagonal of ones and a 'second diagonal' of negative and the rest of entries equal to zero. (It can be proved by induction).
3. If we know that

$$
A=\left(\begin{array}{ccc}
5 & 2 & -1 / 2 \\
-3 / 2 & -7 / 10 & 1 / 5 \\
-1 / 2 & -1 / 10 & 1 / 10
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{ccc}
1 & 3 & -1 \\
-1 & -5 & 5 \\
4 & 10 & 10
\end{array}\right)
$$

Solve the system $A x=\left(\begin{array}{c}1 \\ 0 \\ -3\end{array}\right)$.

Solution.

To solve the system we have to multiply the matrix equation with A^{-1} by the left $A^{-1} A x=A^{-1}\left(\begin{array}{c}1 \\ 0 \\ -3\end{array}\right)$; since $A^{-1} A=I_{3}$ we can simply compute

$$
x=A^{-1}\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & -1 \\
-1 & -5 & 5 \\
4 & 10 & 10
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right)=\left(\begin{array}{c}
4 \\
-16 \\
-26
\end{array}\right)
$$

4. Exercise 31 from section 2.5 For this problem, use the interactive row reducer to row reduce the matrix A (MATHLAB might use a permutated lower triangular matrix): http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/ rrinter.html

Solution.

$$
\begin{aligned}
A & =\left(\begin{array}{cccccccc}
4 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 4 & -1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 4 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 4 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & 4 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 4
\end{array}\right) \\
L & =\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\frac{1}{4} & 1 & & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{-1}{15} & 1 & & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{-4}{15} & \frac{-8}{28} & 1 & 0 & 0 & 0 & 0 & \\
0 & 0 & \frac{-4}{14} & \frac{-1}{12} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{-7}{24} & \frac{-26}{89} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-24}{89} & \frac{-4147}{48149} & 1 & 0 & \\
0 & 0 & 0 & 0 & 0 & \frac{-319}{1082} & \frac{-56977}{194370} & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& U=\left(\begin{array}{cccccccc}
4 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{15}{4} & \frac{-1}{4} & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{56}{15} & \frac{-16}{15} & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{24}{7} & \frac{-2}{7} & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{89}{24} & \frac{-13}{12} & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1082}{319} & \frac{-26}{89} & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{930}{251} & \frac{-227}{20} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{359}{106}
\end{array}\right) \\
& A^{-1} \sim\left(\begin{array}{cccccccc}
0.30 & 0.09 & 0.10 & 0.05 & 0.03 & 0.02 & 0.01 & 0.01 \\
0.09 & 0.30 & 0.05 & 0.09 & 0.02 & 0.03 & 0.01 & 0.01 \\
0.09 & 0.05 & 0.33 & 0.11 & 0.10 & 0.06 & 0.03 & 0.02 \\
0.05 & 0.09 & 0.11 & 0.33 & 0.06 & 0.10 & 0.02 & 0.03 \\
0.03 & 0.02 & 0.10 & 0.06 & 0.33 & 0.11 & 0.09 & 0.05 \\
0.02 & 0.03 & 0.06 & 0.10 & 0.11 & 0.33 & 0.05 & 0.09 \\
0.01 & 0.01 & 0.03 & 0.02 & 0.09 & 0.05 & 0.30 & 0.09 \\
0.09 & 0.01 & 0.02 & 0.03 & 0.05 & 0.09 & 0.09 & 0.30
\end{array}\right)
\end{aligned}
$$

