Math 2802 N1-N3 Worksheet 5

February 16th, 2018

1. Exercise 3.1.10 Compute the determinant of A using cofactor expansions. Choose a row or column with the least amount of non-zero entries.

$$
A=\left(\begin{array}{cccc}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -4 & -3 & 5 \\
2 & 0 & 3 & 5
\end{array}\right)
$$

2. Exercises 3.2.19 and 3.2.26
a) If det $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)=7$, find the determinant of $\left(\begin{array}{ccc}a & b & c \\ 2 d+a & 2 e+b & 2 f+c \\ g & h & i\end{array}\right)$
b) Use determinants to decide if the following set of vectors is linearly independent.

$$
\left\{\left(\begin{array}{c}
3 \\
5 \\
-6 \\
4
\end{array}\right),\left(\begin{array}{c}
2 \\
-6 \\
0 \\
7
\end{array}\right),\left(\begin{array}{c}
-2 \\
-1 \\
3 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
-2
\end{array}\right)\right\}
$$

3. Exercise 2.8.25 Find a basis for $\operatorname{Col}(A)$ and a basis for $\operatorname{Nul}(A)$.

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 4 & 8 & 0 & 5 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

4. Exercise 2.9.17 Select true or false for the following statements
a) If $\mathcal{B}=\left\{v_{1}, \ldots, v_{p}\right\}$ is a basis for a subspace H and if $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{p} v_{p}$, then $c_{1}, \ldots c_{p}$ are the coordinates of x relative to the basis \mathcal{B}.
b) Each line in \mathbf{R}^{n} is a one-dimensional subspace of \mathbf{R}^{n}.
c) The dimension of $\operatorname{Col}(A)$ is the number of pivot columns of A.
d) The dimensions of $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$ add up to the dimension of the domain in a transformation with $T(x)=A x$.
e) If a set of p vectors span a p-dimensional subspace H of \mathbf{R}^{n}, then these vectors form a basis for H.
