
Math 2802 N1-N3 Worksheet 6

Solutions

1. Determine whether the following statements are true or give a counterexample.
Let A be n× n matrix

a) If Ax = λx then λ is an eigenvalue of A

b) If there are matrices P, D such that A= PDP−1 then A is diagonalizable.

c) If A has n distinct eigenvalues then A is diagonalizable.

d) If A has only one eigenvalue with algebraic multiplicity n then A is not diago-
nalizable.

Solution.

a) False. It’s important to verify x 6= 0, otherwise we can find that any real
number becomes eigenvalue of A

b) False. It is important to be precise about the assumption that D is a diagonal
matrix.

c) True. If A has n distinct eigenvalues then there will be a basis of Rn composed
of eigenvectors of A.

d) False. If A= I is the identity matrix, then it as only one eigenvalue: 1 and it
is diagonal matrix.

2. Discuss: What is the difference between algebraic multiplicity of an eigenvalue
and geometric multiplicity of an eigenvalue.

Solution.
The algebraic multiplicity of an eigenvalue, say e.g. λ = 1, is obtained by looking
at how many factors λ− 1 there are. The algebraic multiplicity is an upper bound
to the dimension of the 1-eigenspace. The geometric multiplicity of eigenvalue 1
is precisely the dimension of the 1-eigenspace.

3. Find the algebraic multiplicity and eigenspace of eigenvalue 5 for matrix

A=







5 5 0 2
0 2 −3 6
0 0 3 −2
0 0 0 5







Solution.

Since A is upper-triangular (and so is A−λI) we have that det(A−λI) = (5−λ)2(2−
λ)(3−λ). Thus, eigenvalue 5 has algebraic multiplicity 2.



The 5-eigenspace is precisely the solution set to (A−5I)x = 0, so we have to row
reduce

A− 5I =







0 5 0 2
0 −3 −3 6
0 0 −2 −2
0 0 0 0






∼







0 1 1 −2
0 0 1 1
0 5 0 2
0 0 0 0







∼







0 1 1 −2
0 0 1 1
0 0 −5 12
0 0 0 0






∼







0 1 1 −2
0 0 1 1
0 0 0 17
0 0 0 0







There is only 1 free variable, so the 5-eigenspace will have dimension 1. Solving

the systems gives that all solutions have the form







x1
0
0
0






. In other words, the 5-

eigenspace is:
















x
0
0
0






: x ∈ R











= Span

















1
0
0
0

















4. Let A= PDP−1 with P =
�

3 −1
1 3

�

and D =
�

2 0
0 1/2

�

. Draw the eigenspaces of

2 and 1/2; and (approximately) draw x , Ax , A2 x , A3 x , A4 x; for x =
�

0
10

�

,
�

2
4

�

. If

possible, do not compute powers of A.

Solution.

Let B = {v1, v2} with v1 =
�

3
1

�

and v2 =
�

−1
3

�

. Write x0 =
�

0
10

�

, x1 = Ax , . . . , and

z0 =
�

2
4

�

, z1 = Az, . . ..

Instead of computing powers of A. Imagine that you change your basis from e1, e2
to v1, v2. Since v1, v2 are eigenvectors of the transformation T (x) = Ax , then these
become the axis and the transformation only stretches/srinks along the axis (using
the information of the diagonal matrix D).

In the new basis B, the coordinates are

[x0]B =
�

1
3

�

, [x1]B =
�

2
3/2

�

, [x2]B =
�

4
3/4

�

, [x3]B =
�

8
3/8

�

, [x4]B =
�

16
3/16

�

[z0]B =
�

1
1

�

, [z1]B =
�

2
1/2

�

, [z2]B =
�

4
1/4

�

, [z3]B =
�

8
1/8

�

, [z4]B =
�

16
1/16

�

In a drawing is easier to visualize, you just have to rotate the paper:



5. Let A = PDP−1 with P =
�

1 2
0 1

�

and D =
�

a 0
0 b

�

. Compute Ak. Can you guess

what are possible dynamics for x , Ax , A2 x , . . . depending on the values of a and b?

Solution.
Note that Ak = (PDP−1)(PDP−1) · · · (PDP−1) using k factors. By taking out the
parenthesis we notice that most of the matrices cancel: P−1P = I . And we get
Ak = PDkP−1. This multiplication is easy to compute.

Ak = PDkP−1 =
�

1 2
0 1

��

ak 0
0 bk

��

1 −2
0 1

�

=
�

ak 2bk

0 bk

��

1 −2
0 1

�

=
�

ak −2ak + bk

0 bk

�

.


