Math 2802 N1-N3 Worksheet 6

Solutions

1. Determine whether the following statements are true or give a counterexample. Let A be $n \times n$ matrix
a) If $A x=\lambda x$ then λ is an eigenvalue of A
b) If there are matrices P, D such that $A=P D P^{-1}$ then A is diagonalizable.
c) If A has n distinct eigenvalues then A is diagonalizable.
d) If A has only one eigenvalue with algebraic multiplicity n then A is not diagonalizable.

Solution.

a) False. It's important to verify $x \neq 0$, otherwise we can find that any real number becomes eigenvalue of A
b) False. It is important to be precise about the assumption that D is a diagonal matrix.
c) True. If A has n distinct eigenvalues then there will be a basis of \mathbf{R}^{n} composed of eigenvectors of A.
d) False. If $A=I$ is the identity matrix, then it as only one eigenvalue: 1 and it is diagonal matrix.
2. Discuss: What is the difference between algebraic multiplicity of an eigenvalue and geometric multiplicity of an eigenvalue.

Solution.

The algebraic multiplicity of an eigenvalue, say e.g. $\lambda=1$, is obtained by looking at how many factors $\lambda-1$ there are. The algebraic multiplicity is an upper bound to the dimension of the 1 -eigenspace. The geometric multiplicity of eigenvalue 1 is precisely the dimension of the 1 -eigenspace.
3. Find the algebraic multiplicity and eigenspace of eigenvalue 5 for matrix

$$
A=\left(\begin{array}{cccc}
5 & 5 & 0 & 2 \\
0 & 2 & -3 & 6 \\
0 & 0 & 3 & -2 \\
0 & 0 & 0 & 5
\end{array}\right)
$$

Solution.

Since A is upper-triangular (and so is $A-\lambda I)$ we have that $\operatorname{det}(A-\lambda I)=(5-\lambda)^{2}(2-$ $\lambda)(3-\lambda)$. Thus, eigenvalue 5 has algebraic multiplicity 2 .

The 5-eigenspace is precisely the solution set to $(A-5 I) x=0$, so we have to row reduce

$$
\begin{aligned}
A-5 I & =\left(\begin{array}{cccc}
0 & 5 & 0 & 2 \\
0 & -3 & -3 & 6 \\
0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & 1 & 1 & -2 \\
0 & 0 & 1 & 1 \\
0 & 5 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
0 & 1 & 1 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & -5 & 12 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
0 & 1 & 1 & -2 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 17 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

There is only 1 free variable, so the 5 -eigenspace will have dimension 1 . Solving the systems gives that all solutions have the form $\left(\begin{array}{c}x_{1} \\ 0 \\ 0 \\ 0\end{array}\right)$. In other words, the 5eigenspace is:

$$
\left\{\left(\begin{array}{l}
x \\
0 \\
0 \\
0
\end{array}\right): x \in \mathbf{R}\right\}=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\right\}
$$

4. Let $A=P D P^{-1}$ with $P=\left(\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right)$ and $D=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right)$. Draw the eigenspaces of 2 and $1 / 2$; and (approximately) draw $x, A x, A^{2} x, A^{3} x, A^{4} x$; for $x=\binom{0}{10},\binom{2}{4}$. If possible, do not compute powers of A.

Solution.

Let $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$ with $v_{1}=\binom{3}{1}$ and $v_{2}=\binom{-1}{3}$. Write $x_{0}=\binom{0}{10}, x_{1}=A x, \ldots$, and $z_{0}=\binom{2}{4}, z_{1}=A z, \ldots$.

Instead of computing powers of A. Imagine that you change your basis from e_{1}, e_{2} to v_{1}, v_{2}. Since v_{1}, v_{2} are eigenvectors of the transformation $T(x)=A x$, then these become the axis and the transformation only stretches/srinks along the axis (using the information of the diagonal matrix D).

In the new basis \mathcal{B}, the coordinates are

$$
\begin{aligned}
{\left[x_{0}\right]_{\mathcal{B}} } & =\binom{1}{3},\left[x_{1}\right]_{\mathcal{B}}=\binom{2}{3 / 2},\left[x_{2}\right]_{\mathcal{B}}=\binom{4}{3 / 4},\left[x_{3}\right]_{\mathcal{B}}=\binom{8}{3 / 8},\left[x_{4}\right]_{\mathcal{B}}=\binom{16}{3 / 16} \\
{\left[z_{0}\right]_{\mathcal{B}} } & =\binom{1}{1},\left[z_{1}\right]_{\mathcal{B}}=\binom{2}{1 / 2},\left[z_{2}\right]_{\mathcal{B}}=\binom{4}{1 / 4},\left[z_{3}\right]_{\mathcal{B}}=\binom{8}{1 / 8},\left[z_{4}\right]_{\mathcal{B}}=\binom{16}{1 / 16}
\end{aligned}
$$

In a drawing is easier to visualize, you just have to rotate the paper:

5. Let $A=P D P^{-1}$ with $P=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $D=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. Compute A^{k}. Can you guess what are possible dynamics for $x, A x, A^{2} x, \ldots$ depending on the values of a and b ?

Solution.

Note that $A^{k}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)$ using k factors. By taking out the parenthesis we notice that most of the matrices cancel: $P^{-1} P=I$. And we get $A^{k}=P D^{k} P^{-1}$. This multiplication is easy to compute.

$$
\begin{aligned}
A^{k}=P D^{k} P^{-1} & =\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{k} & 0 \\
0 & b^{k}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{k} & 2 b^{k} \\
0 & b^{k}
\end{array}\right)\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a^{k} & -2 a^{k}+b^{k} \\
0 & b^{k}
\end{array}\right) .
\end{aligned}
$$

