Math 2802 N1-N3 Worksheet 6

February 23rd, 2018

1. Determine whether the following statements are true or give a counterexample. Let A be $n \times n$ matrix
a) If $A x=\lambda x$ then λ is an eigenvalue of A
b) If there are matrices P, D such that $A=P D P^{-1}$ then A is diagonalizable.
c) If A has n distinct eigenvalues then A is diagonalizable.
d) If A has only one eigenvalue with algebraic multiplicity n then A is not diagonalizable.
2. Discuss: What is the difference between algebraic multiplicity of an eigenvalue and geometric multiplicity of an eigenvalue.
3. Find the algebraic multiplicity and eigenspace of eigenvalue 5 for matrix

$$
A=\left(\begin{array}{cccc}
5 & 5 & 0 & 2 \\
0 & 2 & -3 & 6 \\
0 & 0 & 3 & -2 \\
0 & 0 & 0 & 5
\end{array}\right)
$$

4. Let $A=P D P^{-1}$ with $P=\left(\begin{array}{cc}3 & -1 \\ 1 & 3\end{array}\right)$ and $D=\left(\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right)$. Draw the eigenspaces of 2 and $1 / 2$; and (approximately) draw $x, A x, A^{2} x, A^{3} x, A^{4} x$; for $x=\binom{0}{10},\binom{2}{4}$. If possible, do not compute powers of A.
5. Let $A=P D P^{-1}$ with $P=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $D=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$. Compute A^{k}. Can you guess what are possible dynamics for $x, A x, A^{2} x, \ldots$ depending on the values of a and b ?
