Math 2802 N1-N3 Worksheet 6

February 23rd, 2018

- **1.** Determine whether the following statements are true or give a counterexample. Let *A* be $n \times n$ matrix
 - **a)** If $Ax = \lambda x$ then λ is an eigenvalue of A
 - **b)** If there are matrices *P*, *D* such that $A = PDP^{-1}$ then *A* is diagonalizable.
 - c) If *A* has *n* distinct eigenvalues then *A* is diagonalizable.
 - **d)** If *A* has only one eigenvalue with algebraic multiplicity *n* then *A* is not diagonalizable.
- **2. Discuss:** What is the difference between algebraic multiplicity of an eigenvalue and geometric multiplicity of an eigenvalue.
- **3.** Find the algebraic multiplicity and eigenspace of eigenvalue 5 for matrix

$$A = \begin{pmatrix} 5 & 5 & 0 & 2 \\ 0 & 2 & -3 & 6 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

- **4.** Let $A = PDP^{-1}$ with $P = \begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$. Draw the eigenspaces of 2 and 1/2; and (approximately) draw x, Ax, A^2x, A^3x, A^4x ; for $x = \begin{pmatrix} 0 \\ 10 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}$. If possible, do not compute powers of *A*.
- **5.** Let $A = PDP^{-1}$ with $P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Compute A^k . Can you guess what are possible dynamics for x, Ax, A^2x, \ldots depending on the values of a and b?