Math 2802 N1-N3 Worksheet 7

Solutions

1. Determine whether the following statements are true or explain why are they false (can use an example).
a) Every stochastic matrix has a unique steady vector.
b) If $P q=q$ then for $\left\{x_{k}\right\}_{k \geq 0}$ (recall $x_{k}=P x_{k-1}$) converges to q regardless of the initial point x_{0}.

Solution.

a) False. This is only true when P is a regular stochastic matrix. For example, the matrix $P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2\end{array}\right)$ is not regular because all power $P^{k}=P$ have entries that are zeros. We can see that both $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 1 / 2 \\ 1 / 2\end{array}\right)$ are steady-state vectors.
b) False. This is only true when P is a regular stochastic matrix. For example, if $q=\left(\begin{array}{c}0 \\ 1 / 2 \\ 1 / 2\end{array}\right)$ and $x_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ then all vectors $x_{k}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, which will not approach q.
2. Consider a Markov Chain on $\{1,2,3\}$ with transition matrix $P=\left(\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 1 / 2\end{array}\right)$
a) Show that P is a regular matrix
b) Find a steady-state vector for this markov chain
c) What fraction of the time does this chain spend in state 2 ?

Solution.

a) Computing P^{2} we can see that there are no zero-entries. Alternatively, we can draw a 'transition graph' and see that every pair of states is at 2-step distance from each other.
b) Let $v=\left(\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right)$, then $P v=v$
c) The chain will spend, on average, the same amount of time at each state: 33\%
3. Conisder a mouse traversing from room to room (uniformly) at random in the maze below. What fraction of time does it spend in room 3.

Solution.

The transition matrix is $P=\left(\begin{array}{ccccc}0 & 1 / 4 & 0 & 1 / 3 & 0 \\ 1 / 2 & 0 & 1 / 2 & 1 / 3 & 1 / 3 \\ 0 & 1 / 4 & 0 & 0 & 1 / 3 \\ 1 / 2 & 1 / 4 & 0 & 0 & 1 / 3 \\ 0 & 1 / 4 & 1 / 2 & 1 / 3 & 0\end{array}\right)$
we approximate the steady vector by computing a large power of P, for example,

$$
P^{100} \sim\left(\begin{array}{ccccc}
.15 & .15 & .15 & .15 & .15 \\
.28 & .28 & .28 & .28 & .28 \\
.15 & .15 & .15 & .15 & .15 \\
.21 & .21 & .21 & .21 & .21 \\
.21 & .21 & .21 & .21 & .21
\end{array}\right) .
$$

This also shows that P is a regular matrix, and therefore, the steaday vector does represent the approximate fraction of time the mouse spends in each of the rooms. So the mouse spends about 28% of the time in room 2 .
4. Design the google matrix for the following web.

Solution.

The transition matrix of a random walk in the above web is

$$
P=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 / 2 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 & 0 & 1 \\
1 / 3 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

But this matrix is not regular (e.g. you can see this from the zero rows), to make it regular, we add a matrix K full of $1 / 6$ entries. This corresponds to a 'reboot': from time to time a surfer simply starts over at a random webpage.

The google matrix is: $G=.85 P+.15 \mathrm{~K}$ where

$$
K=\left(\begin{array}{llllll}
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6
\end{array}\right)
$$

5. Consider the production model $x=C x+d$ for an economy with two sectors, where $C=\left(\begin{array}{cc}0 & .5 \\ .6 & .2\end{array}\right)$ and $d=\binom{50}{30}$. Determine the production level x necessary to satisfy the final demand d.

Solution.

Consider the matrix $(I-C)=\left(\begin{array}{cc}1 & -.5 \\ -.6 & .8\end{array}\right)$. We can verify this matrix is invertible since $\operatorname{det}(I-C)=.5$.

Therefore, we can solve the equation $x=C x+d$, by solving $(I-C) x=d$. In turn, we can find

$$
x=(I-C)^{-1} d=\frac{1}{\operatorname{det}(I-C)}\left(\begin{array}{cc}
.8 & .5 \\
.6 & 1
\end{array}\right)\binom{50}{30}=\binom{110}{120}
$$

