Math 2802 N1-N3 Worksheet 8

March 16th, 2018

1. Find an upper triangular matrix R such that $A=Q R$. Check your work.

$$
A=\left(\begin{array}{cc}
-2 & 3 \\
5 & 7 \\
2 & -2 \\
4 & 6
\end{array}\right), \quad Q=\frac{1}{7}\left(\begin{array}{cc}
-2 & 5 \\
5 & 2 \\
2 & -4 \\
2 & 4
\end{array}\right)
$$

2. Apply the Gram-Schmidt decomposition to the vectors

$$
\begin{aligned}
& \text { a) } v_{1}=\left(\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \\
& \text { b) } v_{1}=\left(\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{c}
2 \\
-6 \\
1
\end{array}\right), v_{4}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

3. Decide whether the following sets form a basis for \mathbf{R}^{3}. If so, is it an orthogonal basis? If so, convert the orthogonal basis into an orthonormal basis.
a) $\left\{\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\right\}$
b) $\left\{\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right),\left(\begin{array}{c}-3 \\ 1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\}$
c) $\left\{\left(\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right),\left(\begin{array}{c}1 / 2 \\ 0 \\ -1 / 2\end{array}\right),\left(\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right)\right\}$
4. Find the distance from $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ to the plane in \mathbf{R}^{3} spanned by $v_{1}=\left(\begin{array}{c}2 \\ -3 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{c}0 \\ 2 \\ -3\end{array}\right)$.
5. If $y=\left(\begin{array}{l}0 \\ 5 \\ 6\end{array}\right), u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}-1 \\ 6 \\ -5\end{array}\right)$. Find a decomposition $y=\hat{y}+z$, where \widehat{y} is in $W=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$ and z is in the orthogonal complement of W.
