
Divide and conquer recurrence

A divide-and-conquer algorithm is a recursive algorithm which

I divides a problem of size n into subproblems, each of size

n/b (for simplicity, suppose b divides n)

I and combines the solutions of the subproblems into a

solution of the original problem, using g(n) extra

operations.

Then, if f (n) counts the number of operations used to solve

the problem of size n,

f (n) = af (n/b) + g(n).



Maximum of a sequence of numbers

Algorithm for locating the maximum of a1, a2, . . . , an:

If n = 1, then the maximum is a1.

If n > 1, split the sequence into two sequences of length bn/2c
and dn/2e each. Find and compare the maximum of each of

the two smaller sequences; output the largest.

If n is even, then the number of operations is given by:

f (n) = 2f (n/2) + 1.



Merge sort

The merge sort algorithm sorts a list of n elements:

First, split the list into two lists of length bn/2c and dn/2e
each. Then merge these lists into one sorted list; this uses

fewer than n comparisons.

If n is even, then the number of operations is given by:

f (n) = 2f (n/2) + n.



Fast multiplication of integers

In binary expansion, to multiply two 2n-bit integers and split

each of them into two blocks. The original multiplication is

reduced to

three multiplications of n-bit integers,

plus shifts and additions that use Cn operations (for some C ).

f (n) = 3f (n/2) + Cn.



Fast multiplication of matrices

A divide-and-conquer algorithm uses seven multiplications of

two (n2)× (n2) matrices and 15 additions of (n2)× (n2) matrices.

f (n) = 7f (n/2) + 15(n/2)2.

Standard multiplication of two n × n matrix requires g(n)

operations where g(n) is O(n3).

What is the order of f (n)?



Asymptotic upper bound of f
Suppose a, c , d are real numbers and b is an integer such that:

a ≥ 1, b > 1, c > 0, d ≥ 0.

Master Theorem (Section 8.3)

If f : N→ R is an increasing function such that

f (n) = af (n/b) + cnd

for all n = bk . Then

f (n) is


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd .



Applying the master theorem

For fast matrix multiplication:

f (n) = 7f (n/2) + 15(n/2)2.

What is the order of f (n)?



f (n) = 7f (n/2) + 15(n/2)2

The conditions are a, c , d are real numbers and b is an integer

such that:

a ≥ 1, b > 1, c > 0, d ≥ 0.

a =7 ≥ 1

b =2 > 1

c =15/4 > 0

d =2 ≥ 0

Now compare a and bd : 7 > 22

Then

f (n) is O(nlogb a) = O(n2.8).



Asymptotic upper bound of f
Suppose a, c , d are real numbers and b is an integer such that:

a ≥ 1, b > 1, c > 0, d ≥ 0.

Master Theorem (Section 8.3)

If f : N→ R is an increasing function such that

f (n) = af (n/b) + cnd

for all n = bk . Then

f (n) is


O(nd) if a < bd

O(nd log n) if a = bd

O(nlogb a) if a > bd .



Solutions for linear homogeneous recurrence

Let c1 and c2 be real numbers and consider the equation

r2 − c1r − c2 = 0

with roots r1 and r2.

Theorem 1 (Section 8.2)

Suppose that r1 and r2 are distinct.

Then the sequence {an} satisfies the recurrence relation

an = c1an−1 + c2an−2

if and only if there are constants α1, α2 such that

an = α1r
n
1 + α2r

n
2 .



Applying the linear recurrence theorem

For Fibonacci numbers:

fn = fn−1 + fn−2.

Give an explicit formula for fn:



Applying the linear recurrence theorem

For r2 − 1r − 1 = 0, the roots are

r1 = 1+
√
1+4
2 and r2 = 1−

√
1+4
2 .

Then

fn = α1

(
1 +
√

5

2

)n

+ α2

(
1 +
√

5

2

)n

To find out α1, α2, solve the resulting equations when n = 0, 1:



Applying the linear recurrence theorem

f0 = 0 = α1

(
1 +
√

5

2

)0

+ α2

(
1−
√

5

2

)0

= α1 + α2

so α2 = −α1.

f1 = 1 = α1

(
1 +
√

5

2

)1

− α1
(

1−
√

5

2

)1

= α1
√

5.

so α1 = 1/
√

5 and α2 = −1/
√

5. Finally,

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1 +
√

5

2

)n


