Divide and conquer recurrence

A divide-and-conquer algorithm is a recursive algorithm which

- divides a problem of size n into subproblems, each of size n / b (for simplicity, suppose b divides n)
- and combines the solutions of the subproblems into a solution of the original problem, using $g(n)$ extra operations.

Then, if $f(n)$ counts the number of operations used to solve the problem of size n,

$$
f(n)=a f(n / b)+g(n)
$$

Maximum of a sequence of numbers

Algorithm for locating the maximum of $a_{1}, a_{2}, \ldots, a_{n}$:
If $n=1$, then the maximum is a_{1}.
If $n>1$, split the sequence into two sequences of length $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ each. Find and compare the maximum of each of the two smaller sequences; output the largest.

If n is even, then the number of operations is given by:

$$
f(n)=2 f(n / 2)+1
$$

Merge sort

The merge sort algorithm sorts a list of n elements:
First, split the list into two lists of length $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ each. Then merge these lists into one sorted list; this uses fewer than n comparisons.

If n is even, then the number of operations is given by:

$$
f(n)=2 f(n / 2)+n
$$

Fast multiplication of integers

In binary expansion, to multiply two $2 n$-bit integers and split each of them into two blocks. The original multiplication is reduced to
three multiplications of n-bit integers, plus shifts and additions that use $C n$ operations (for some C).

$$
f(n)=3 f(n / 2)+C n .
$$

Fast multiplication of matrices

A divide-and-conquer algorithm uses seven multiplications of two $\left(\frac{n}{2}\right) \times\left(\frac{n}{2}\right)$ matrices and 15 additions of $\left(\frac{n}{2}\right) \times\left(\frac{n}{2}\right)$ matrices.

$$
f(n)=7 f(n / 2)+15(n / 2)^{2}
$$

Standard multiplication of two $n \times n$ matrix requires $g(n)$ operations where $g(n)$ is $O\left(n^{3}\right)$.

What is the order of $f(n)$?

Asymptotic upper bound of f

Suppose a, c, d are real numbers and b is an integer such that:

$$
a \geq 1, b>1, c>0, d \geq 0
$$

Master Theorem (Section 8.3)
If $f: \mathbb{N} \rightarrow \mathbb{R}$ is an increasing function such that

$$
f(n)=a f(n / b)+c n^{d}
$$

for all $n=b^{k}$. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Applying the master theorem

For fast matrix multiplication:

$$
f(n)=7 f(n / 2)+15(n / 2)^{2} .
$$

What is the order of $f(n)$?

$f(n)=7 f(n / 2)+15(n / 2)^{2}$

The conditions are a, c, d are real numbers and b is an integer such that:

$$
\begin{array}{ll}
a \geq 1, b>1, c>0, d & \geq 0 . \\
& \\
a=7 & \geq 1 \\
b=2 & >1 \\
c=15 / 4 & >0 \\
d=2 & \geq 0
\end{array}
$$

Now compare a and $b^{d}: 7>2^{2}$
Then

$$
f(n) \text { is } O\left(n^{\log _{b} a}\right)=O\left(n^{2.8}\right) .
$$

Asymptotic upper bound of f

Suppose a, c, d are real numbers and b is an integer such that:

$$
a \geq 1, b>1, c>0, d \geq 0
$$

Master Theorem (Section 8.3)
If $f: \mathbb{N} \rightarrow \mathbb{R}$ is an increasing function such that

$$
f(n)=a f(n / b)+c n^{d}
$$

for all $n=b^{k}$. Then

$$
f(n) \text { is } \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Solutions for linear homogeneous recurrence

Let c_{1} and c_{2} be real numbers and consider the equation

$$
r^{2}-c_{1} r-c_{2}=0
$$

with roots r_{1} and r_{2}.
Theorem 1 (Section 8.2)
Suppose that r_{1} and r_{2} are distinct.
Then the sequence $\left\{a_{n}\right\}$ satisfies the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

if and only if there are constants α_{1}, α_{2} such that

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

Applying the linear recurrence theorem

For Fibonacci numbers:

$$
f_{n}=f_{n-1}+f_{n-2} .
$$

Give an explicit formula for f_{n} :

Applying the linear recurrence theorem

For $r^{2}-1 r-1=0$, the roots are

$$
r_{1}=\frac{1+\sqrt{1+4}}{2} \text { and } r_{2}=\frac{1-\sqrt{1+4}}{2} .
$$

Then

$$
f_{n}=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\alpha_{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

To find out α_{1}, α_{2}, solve the resulting equations when $n=0,1$:

Applying the linear recurrence theorem

$$
f_{0}=0=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{0}+\alpha_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{0}=\alpha_{1}+\alpha_{2}
$$

so $\alpha_{2}=-\alpha_{1}$.

$$
f_{1}=1=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\alpha_{1}\left(\frac{1-\sqrt{5}}{2}\right)^{1}=\alpha_{1} \sqrt{5}
$$

so $\alpha_{1}=1 / \sqrt{5}$ and $\alpha_{2}=-1 / \sqrt{5}$. Finally,

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

