- Combinatorics is the study of arragements of objects
- Enumeration is the counting of objects with certain properties.

There are applications in

- Complexity of algorithms
- Probability
- Sequencing DNA

Enumeration 101
 Count ways to do a given task.

Math notation:
Want to find the cardinality of a set $|\mathcal{T}|$
where \mathcal{T} is the set of all the ways to perform a given task.

Examples

A class has 25 Software engineers and 30 Computer engineers. There are 18 U2-students and 10 U 2 -Software engineers.

Form a committee: President, Vicepresident and 3 secretaries.

- Ways to select a president: $25+30=55$
- Possible presidents in U2 or Software engineering: $18+25-10=33$
- Select president and vicepresident: 55-54
- Teams of secretaries: $\frac{55.54 .53}{6}$

Sum rule

If the task can be done either in one of n_{1} ways or in one of n_{2} ways; all of them distinct. Then in total there are

$$
n_{1}+n_{2} \text { ways to do the task. }
$$

Math notation: If $A \cap B=\emptyset$, then

$$
|\mathcal{T}|=|A \cup B|=|A|+|B|
$$

Inclusion-Exclusion principle

For any sets A_{1}, A_{2}, A_{3} :

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|
$$

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup A_{3}\right|= & \left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \\
& -\left[\left|A_{1} \cap A_{2}\right|+\left|A_{2} \cap A_{3}\right|+\left|A_{3} \cap A_{1}\right|\right] \\
& +\left[\mid A_{1} \cap A_{2} \cap A_{3}\right]
\end{aligned}
$$

How would you get $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|$?

Product rule

If the task can be broken down into a sequence of two tasks. The first can be done in n_{1} ways and the second in n_{2} ways. Then in total there are

$$
n_{1} \cdot n_{2} \text { ways to do the task. }
$$

Math notation: Since $\mathcal{T}=A \times B$, then

$$
|\mathcal{T}|=|A \times B|=|A| \cdot|B|
$$

Division rule

If the task can be done using a procedure that can be carried out in n ways. And each outcome of such task is obtain from exactly d distinct ways of that procedure. Then in total there are

$$
\frac{n}{d} \text { ways to do the task. }
$$

Math notation: There is an equivalence relation in \mathcal{P} (all classes of size d), then

$$
|\mathcal{T}|=\frac{|\mathcal{P}|}{d}
$$

Permutations

Select k distinct elements of a set of n elements. Arrange them in a list so that the order of these elements matter.

Using the product rule (sequence of k decisions), the total number of ways is

$$
P(n, k)=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

Combinations

Select k distinct elements of a set of n elements. Arrange them in a set so that the order of these elements does not matter.

Using the division rule (forget the ordering in lists), the total number of ways is

$$
C(n, k)=\frac{P(n, k)}{k!}=\frac{n!}{k!(n-k)!}
$$

Examples revisited

A class has 25 Software engineers and 30 Computer engineers. There are 18 U 2-students and 10 U 2 -Software engineers.

Form a committee: President, Vicepresident and 3 secretaries.

- Ways to select a president: $25+30$ Disjoint sets
- Possible presidents in U2 or Software eng: $18+25-10$ Inclusion-Exclusion Principle
- Select president and vicepresident: $P(55,2)=55 \cdot 54$ Sequence, order matters
- Teams of secretaries: $C(55,3)=\frac{55 \cdot 54 \cdot 53}{3 \cdot 2 \cdot 1}$ Equivalence, order does not matter

Summary 1

- Sum rule (Disjoint sets) $|\mathcal{T}|=|A|+|B|$
- Inclusion-Exclusion Principle

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|
$$

- Product rule (Sequence) $|\mathcal{T}|=|A| \cdot|B|$
- Division rule (Equivalence) $|\mathcal{T}|=|\mathcal{P}| / d$
- Permutations (Ordered) $P(n, k)=\frac{n!}{(n-k)!}$
- Combinations (Not ordered) $C(n, k)=\frac{n!}{k!(n-k)!}$

Counting 201:

Binomial coefficients and combinatorial proofs

Combinations

The number $\frac{n!}{k!(n-k)!}$ has two interpretations:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Number of subsets of k elements among a set of n elements:

$$
C(n, k)=C_{k}^{n}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Or, num. of subsets of $n-k$ elements among a set of n elements.

Combinatorial Proofs

Use counting arguments to prove that both sides of an identity count the same collection of objects but in different ways.

Ex. Show that

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Example's proof

Consider the experiment of having n numbered balls.
We will paint them so that there are k blue balls and $n-k$ red balls. In how many ways can we do this?

- First pick the k balls to be painted blue: $\binom{n}{k}$
- First pick the $n-k$ balls to be painted red: $\binom{n}{n-k}$

Both procedures give the same outcome, so

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Another example

Show that $36^{6}-26^{6}=10 \sum_{i=1}^{6} 26^{i-1} 36^{6-i}$
Experiment: The passwords on a computer system are 6 bits long, are formed by digits or uppercase letters and at least one digit. How many distinct passwords are there?

- All strings (length 6) using digits and uppercases: 36^{6} Substract (undesired) strings with no digits: 26^{6}.
- Strings with first digit in i-th place: $10 \cdot 26^{i-1} \cdot 36^{6-i}$

The Binomial theorem

Take n factors:

$$
(x+y)(x+y) \cdots(x+y)
$$

In the expansion, how many terms $x^{k} y^{n-k}$ are there?
From which of n parenthesis you pick k terms equal to x ?
Let $x, y \in \mathbb{R}$ and $n \geq 1$ be an integer. Then

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}
$$

Examples:

- $(x+y)^{2}=(x+y)(x+y)=x^{2}+2 x y+y^{2} ;$
- In $(x+y)^{3}$, the coefficient of $x y^{2}$ equals: $\binom{n}{3}=3$

Pascal's triangle: An important identity

Let $n \geq k \geq 1$ be integers, then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Combinatorial proof. Select k of $n+1$ numbered balls. Use sum rule considering two cases:

- Ball \#1 is not selected; choose from n balls: $\binom{n}{k}$.
- Ball \#1 is selected; remains to select $k-1$ balls: $\binom{n}{k-1}$.

Or, just select k of them: $\binom{n+1}{k}$.

Pascal's triangle: An important identity

FIGURE 1 Pascal's Triangle.

Two Exercises

Let $n, k \geq 1$ be integers, then

$$
\binom{n+k+1}{k}=\sum_{j=0}^{k}\binom{n+j}{j}
$$

Hint: Consider bit strings with a fixed number of zeros.
Vandermonde's identity
Let $n, m \geq k \geq 1$ be integers, then

$$
\binom{m+n}{k}=\sum_{j=0}^{k}\binom{m}{j}\binom{n}{k-j}
$$

Hint: Pick a comittee of a given size, out of a group of men and women.

The bars-and-stars trick

Select 5 bills from cash box with 7 slots for $\$ 1, \$ 2, \$ 5, \$ 10, \$ 20, \$ 50$ and $\$ 100$ bills:

$$
|| * *||*||
$$

FIGURE 2 Examples of Ways to Select Five Bills.

Imagine you combine 5 stars and 6 separating bars.

The bars-and-stars trick

Select 5 bills from $\$ 1, \$ 2, \$ 5, \$ 10, \$ 20, \$ 50$ and $\$ 100$ bills:

$$
\binom{5+6}{5} \text { ways. }
$$

Same trick for:

- How many steps does the following sequence of loops has:

$$
\begin{aligned}
& k:=0 \\
& \text { for } i_{1}:=1 \text { to } n \\
& \quad \text { for } i_{2}:=1 \text { to } i_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i_{m}:=1 \text { to } i_{m-1} \\
& k:=k+1
\end{aligned}
$$

- Solutions to $x_{1}+x_{2}+x_{3}=30 ; x_{1}, x_{2}, x_{3} \in \mathbb{N}$.

Summary 2 (Table 1, Section 6.5)

Select k objects out of a set of n elements			
Repetitions allowed	Ordered	Formula	Name
No	Yes	$\frac{n!}{(n-k)!}$	Permutation
No	No	$\binom{n}{k}$	Combination
Yes	Yes	n^{k}	Permutation
Yes	No	$\binom{(n-1)+k}{k}$	Combination

Important: In exercises, specify the case you are using.

Discrete Probability $=$ Counting

Laplace's definition of Probability

- Experiment: procedure that yields an outcome.
- Sample space: the set of possible outcomes.
- Event: a subset of the sample space. (usually defined by a given property of the outcome)

Let S is a finite sample space of equally likely outcomes. Then the probability of an event $E \subset S$ is

$$
p(E)=\frac{|E|}{|S|}=\frac{\# \text { Favorable cases }}{\# \text { Total cases }}
$$

Basic properties

Let S is a finite sample space of equally likely outcomes. Then the probability of an event $E \subset S$ is

$$
p(E)=\frac{|E|}{|S|}=\frac{\# \text { Favorable cases }}{\# \text { Total cases }}
$$

Using the inclusion-exclusion principle:

- Complement: $p(\bar{E})=1-p(E)$
- Union: $p(E \cup F)=p(E)+p(F)-p(E \cap F)$

