Combinatorics

is the study of arragements of objects

Enumeration

is the counting of objects with certain properties.

There are applications in

- Complexity of algorithms
- ► Probability
- ► Sequencing DNA

Enumeration 101 Count ways to do a given task.

Math notation:

Want to find the cardinality of a set $|\mathcal{T}|$

where \mathcal{T} is the set of all the ways to perform a given task.

Examples

A class has 25 Software engineers and 30 Computer engineers. There are 18 U2-students and 10 U2-Software engineers.

Form a committee: President, Vicepresident and 3 secretaries.

- Ways to select a president: 25 + 30 = 55
- ► Possible presidents in U2 or Software engineering: 18+25-10=33
- ► Select president and vicepresident: 55 · 54
- Teams of secretaries: $\frac{55 \cdot 54 \cdot 53}{6}$

Sum rule

If the task can be done either in one of n_1 ways or in one of n_2 ways; all of them distinct. Then in total there are

 $n_1 + n_2$ ways to do the task.

Math notation: If $A \cap B = \emptyset$, then

 $|\mathcal{T}| = |A \cup B| = |A| + |B|$

Inclusion-Exclusion principle

For any sets A_1, A_2, A_3 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$\begin{aligned} |A_1 \cup A_2 \cup A_3| = & |A_1| + |A_2| + |A_3| \\ &- [|A_1 \cap A_2| + |A_2 \cap A_3| + |A_3 \cap A_1|] \\ &+ [|A_1 \cap A_2 \cap A_3] \end{aligned}$$

How would you get $|A_1 \cup A_2 \cup \cdots \cup A_n|$?

Product rule

If the task can be broken down into a sequence of two tasks. The first can be done in n_1 ways and the second in n_2 ways. Then in total there are

 $n_1 \cdot n_2$ ways to do the task.

Math notation: Since $T = A \times B$, then

 $|\mathcal{T}| = |A \times B| = |A| \cdot |B|$

Division rule

If the task can be done using a procedure that can be carried out in n ways. And each outcome of such task is obtain from exactly d distinct ways of that procedure. Then in total there are

```
\frac{n}{d} ways to do the task.
```

Math notation: There is an equivalence relation in \mathcal{P} (all classes of size d), then

$$|\mathcal{T}| = \frac{|\mathcal{P}|}{d}$$

Permutations

Select k distinct elements of a set of n elements. Arrange them in a list so that the order of these elements matter.

Using the product rule (sequence of k decisions), the total number of ways is

$$P(n,k) = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

Combinations

Select k distinct elements of a set of n elements. Arrange them in a set so that the order of these elements does not matter.

Using the division rule (forget the ordering in lists), the total number of ways is

$$C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Examples revisited

A class has 25 Software engineers and 30 Computer engineers. There are 18 *U*2-students and 10 U2-Software engineers.

Form a committee: President, Vicepresident and 3 secretaries.

- Ways to select a president: 25 + 30
 Disjoint sets
- Possible presidents in U2 or Software eng: 18 + 25 10 Inclusion-Exclusion Principle
- ► Select president and vicepresident: P(55, 2) = 55 · 54 Sequence, order matters
- ► Teams of secretaries: C(55, 3) = 55.54.53 3.2.1 Equivalence, order does not matter

Summary 1

- Sum rule (Disjoint sets) $|\mathcal{T}| = |A| + |B|$
- ► Inclusion-Exclusion Principle $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$
- Product rule (Sequence) $|\mathcal{T}| = |A| \cdot |B|$
- Division rule (Equivalence) $|\mathcal{T}| = |\mathcal{P}|/d$
- ▶ Permutations (Ordered) $P(n, k) = \frac{n!}{(n-k)!}$
- Combinations (Not ordered) $C(n, k) = \frac{n!}{k!(n-k)!}$

Counting 201: Binomial coefficients and combinatorial proofs

Combinations

The number $\frac{n!}{k!(n-k)!}$ has two interpretations:

$$\binom{n}{k} = \binom{n}{n-k}$$

Number of subsets of k elements among a set of n elements:

$$C(n,k) = C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Or, num. of subsets of n - k elements among a set of n elements.

Use counting arguments to prove that both sides of an identity count the same collection of objects but in different ways.

Ex. Show that

$$\binom{n}{k} = \binom{n}{n-k}$$

Example's proof

Consider the experiment of having *n* **numbered balls**. We will paint them so that there are *k* blue balls and n - k red balls. In how many ways can we do this?

- First pick the k balls to be painted blue: $\binom{n}{k}$
- First pick the n k balls to be painted red: $\binom{n}{n-k}$

Both procedures give the same outcome, so

$$\binom{n}{k} = \binom{n}{n-k}$$

Another example

Show that $36^6 - 26^6 = 10 \sum_{i=1}^{6} 26^{i-1} 36^{6-i}$

Experiment: The passwords on a computer system are 6 bits long, are formed by digits or uppercase letters and at least one digit. How many distinct passwords are there?

- All strings (length 6) using digits and uppercases: 36⁶
 Substract (undesired) strings with no digits: 26⁶.
- ► Strings with first digit in *i*-th place: $10 \cdot 26^{i-1} \cdot 36^{6-i}$

The Binomial theorem Take *n* factors:

$$(x+y)(x+y)\cdots(x+y).$$

In the expansion, how many terms $x^k y^{n-k}$ are there? From which of *n* parenthesis you pick *k* terms equal to *x*?

Let $x, y \in \mathbb{R}$ and $n \geq 1$ be an integer. Then

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^j y^{n-j}$$

Examples:

•
$$(x + y)^2 = (x + y)(x + y) = x^2 + 2xy + y^2;$$

► In $(x + y)^3$, the coefficient of xy^2 equals: $\binom{n}{3} = 3$

Pascal's triangle: An important identity

Let $n \ge k \ge 1$ be integers, then

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Combinatorial proof. Select k of n + 1 numbered balls. Use sum rule considering two cases:

- ▶ Ball #1 is not selected; choose from *n* balls: $\binom{n}{k}$.
- ▶ Ball #1 is selected; remains to select k 1 balls: $\binom{n}{k-1}$.

Or, just select k of them: $\binom{n+1}{k}$.

Pascal's triangle: An important identity

Two Exercises

Let $n, k \geq 1$ be integers, then

$$\binom{n+k+1}{k} = \sum_{j=0}^k \binom{n+j}{j}.$$

Hint: Consider bit strings with a fixed number of zeros.

Vandermonde's identity Let n, m > k > 1 be integers, then

$$\binom{m+n}{k} = \sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j}.$$

Hint: Pick a comittee of a given size, out of a group of men and women.

The bars-and-stars trick

Select 5 bills from cash box with 7 slots for \$1, \$2, \$5, \$10, \$20, \$50 and \$100 bills:

FIGURE 2 Examples of Ways to Select Five Bills.

Imagine you combine 5 stars and 6 separating bars.

The bars-and-stars trick

Select 5 bills from \$1, \$2, \$5, \$10, \$20, \$50 and \$100 bills:

$$\binom{5+6}{5}$$
 ways.

Same trick for:

- How many steps does the following sequence of loops has:
 k := 0
 for i₁ := 1 to n
 for i₂ := 1 to i₁
 ...
 for i_m := 1 to i_{m-1}
 k := k + 1
- Solutions to $x_1 + x_2 + x_3 = 30$; $x_1, x_2, x_3 \in \mathbb{N}$.

Summary 2 (Table 1, Section 6.5)

Select k objects out of a set of n elements			
Repetitions allowed	Ordered	Formula	Name
No	Yes	$\frac{n!}{(n-k)!}$	Permutation
No	No	$\binom{n}{k}$	Combination
Yes	Yes	n ^k	Permutation
Yes	No	$\binom{(n-1)+k}{k}$	Combination

Important: In exercises, specify the case you are using.

Discrete Probability = Counting

Laplace's definition of Probability

- **Experiment:** procedure that **yields an outcome**.
- ► Sample space: the set of possible outcomes.
- Event: a subset of the sample space.
 (usually defined by a given property of the outcome)

Let *S* is a finite sample space of equally likely outcomes. Then the probability of an event $E \subset S$ is

$$p(E) = \frac{|E|}{|S|} = \frac{\# \text{ Favorable cases}}{\# \text{ Total cases}}$$

Basic properties

Let *S* is a finite sample space of equally likely outcomes. Then the probability of an event $E \subset S$ is

$$p(E) = \frac{|E|}{|S|} = \frac{\# \text{ Favorable cases}}{\# \text{ Total cases}}$$

Using the inclusion-exclusion principle:

- Complement: $p(\bar{E}) = 1 p(E)$
- Union: $p(E \cup F) = p(E) + p(F) p(E \cap F)$