Relations and functions

Let A and B be sets.

- A relation R from A to B is a subset $R \subseteq A \times B$.
E.g. $A=\{2,3,5\}$ and $B=\{10,11, \ldots, 15\}$
$R_{1}=\{(a, b) \in A \times B: b / a \in \mathbb{Z}\}$
$R_{2}=\{(2,11),(2,15),(3,14)\}$
- A function F from A to B is a special type of relation.

For every $a \in A, F$ contains exactly one ordered pair (a, b).

$$
\begin{aligned}
& F_{1}=\{(a, b) \in A \times B: b=a+9\} \\
& F_{2}=\{(2,11),(3,14),(5,14)\}
\end{aligned}
$$

Standard notation for functions

A function F from A to B is a relation where, for every $a \in A$, F contains exactly one ordered pair (a, b).

- $f: A \rightarrow B, f$ maps A to B.
- Ordered Pairs: $(a, f(a))=(a, b)$
- b is image of a,
- a is preimage of b.
- Domain: A
- Codomain: B
- Range: $f(A)=\{b \in B: b=f(a)$ for some $a \in A\}$

Standard notation for functions

Types of functions

- Injective, one-to-one

$$
f\left(a_{1}\right)=f\left(a_{2}\right) \text { implies } a_{1}=a_{2} .
$$

- Surjective, onto

The range $f(A)=B$.

- Bijection, one-to-one correspondence Both injective and surjective.

Important functions

- Floor: $\lfloor x\rfloor$ is the largest integer which is $\leq x$,
- Ceiling: $\lceil x\rceil$ is the smallest integer which is $\geq x$,
- Exponential: for a positive integer n,

$$
a^{n}=a \cdot a \cdot a \cdots a(n \text { times }),
$$

- Factorial: for a positive integer n,

$$
n!=1 \cdot 2 \cdot 3 \cdots n
$$

Sequences

Sequences: are simply representations of functions
from \mathbf{Z}^{+}to $\mathbf{R}: a_{1}, a_{2}, a_{3}, \ldots$
from \mathbf{N} to \mathbf{R} : $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$

- Arithmetic: $a_{n}=c+d n$
- Geometric: $a_{n}=c \cdot b^{n}$

Exercises with Summations and products

- $\sum_{i=1}^{10}(2+3 i)$
- $\prod_{i=0}^{4}\left(3^{i}\right)$
- Convention: $\sum_{i=1}^{0}=0$
- Convention: $\prod_{i=1}^{0}=1$
- $\sum_{i=1}^{3} \prod_{j=i}^{i+4} j$

Concept of cardinality using functions

Two non-empty sets, A and B have the same cardinality if and only if there is a bijection from A to B.

Countable sets If there is a bijection between

- A and $\{1, \ldots, n\}$ then $|A|=n, S$ has cardinality n, finite.
- A and \mathbf{N} then $|A|=\aleph_{0}, S$ has cardinality aleph null, infinite.

Uncountable sets

- If there is surjection from A to \mathbf{N} but there is not a surjection from \mathbf{N} to A.

Operations with functions

- Inverse: When $f: A \rightarrow B$ is a bijection.

$$
f^{-1}(b)=a, \text { where } f(a)=b
$$

- Composition: When $g: A \rightarrow B$ and $f: B \rightarrow C$.

$$
f \circ g(a)=f(g(a))
$$

Extra: Operations with functions

- Sums: When $f_{1}, f_{2}: A \rightarrow B$, and B is closed under sums.

$$
\left(f_{1}+f_{2}\right)(a)=f_{1}(a)+f_{2}(a)
$$

- Product: When $f_{1}, f_{2}: A \rightarrow B$, and B is closed under products

$$
\left(f_{1} f_{2}\right)(a)=f_{1}(a) f_{2}(a)
$$

- Monotone(Increasing/Decreasing): When $f: A \rightarrow B$, and A, B are ordered sets.

$$
a_{1} \leq a_{2} \text { implies } f\left(a_{1}\right) \leq f\left(a_{2}\right)
$$

Note: Z, R and \mathbf{C} are ordered sets and closed under sums and products.

