Relations and functions

Let A and B be sets.

• A relation *R* from *A* to *B* is a subset $R \subseteq A \times B$.

E.g. $A = \{2, 3, 5\}$ and $B = \{10, 11, \dots, 15\}$ $R_1 = \{(a, b) \in A \times B : b/a \in \mathbb{Z}\}$ $R_2 = \{(2, 11), (2, 15), (3, 14)\}$

A function F from A to B is a special type of relation.
For every a ∈ A, F contains exactly one ordered pair (a, b).
F₁ = {(a, b) ∈ A × B : b = a + 9}
F₂ = {(2, 11), (3, 14), (5, 14)}

Standard notation for functions

A function F from A to B is a relation where, for every $a \in A$,

F contains exactly one ordered pair (a, b).

- $f : A \rightarrow B$, f maps A to B.
- Ordered Pairs: (a, f(a)) = (a, b)
 - ► *b* is image of *a*,
 - ► a is preimage of b.
- ► Domain: A
- ► Codomain: *B*
- ▶ Range: $f(A) = \{b \in B : b = f(a) \text{ for some } a \in A\}$

Standard notation for functions

Types of functions

- ► Injective, one-to-one $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- ► Surjective, onto The range f(A) = B.
- Bijection, one-to-one correspondence
 Both injective and surjective.

Important functions

- ▶ Floor: $\lfloor x \rfloor$ is the largest integer which is $\leq x$,
- Ceiling: $\lceil x \rceil$ is the smallest integer which is $\ge x$,
- Exponential: for a positive integer *n*,

$$a^n = a \cdot a \cdot a \cdots a$$
 (*n* times),

► Factorial: for a positive integer *n*,

$$\mathbf{n!}=1\cdot 2\cdot 3\cdots \mathbf{n},$$

Sequences: are simply representations of functions

from Z^+ to R: $a_1, a_2, a_3, ...$ from N to R: $a_0, a_1, a_2, a_3, ...$

- Arithmetic: $a_n = c + dn$
- Geometric: $a_n = c \cdot b^n$

Exercises with Summations and products

- $\sum_{i=1}^{10} (2+3i)$
- ► $\prod_{i=0}^{4} (3^i)$
- Convention: $\sum_{i=1}^{0} = 0$
- Convention: $\prod_{i=1}^{0} = 1$
- ► $\sum_{i=1}^{3} \prod_{j=i}^{i+4} j$

Concept of cardinality using functions

Two non-empty sets, A and B have the same cardinality if and only if there is a bijection from A to B.

Countable sets If there is a bijection between

- ► A and {1,..., n} then |A| = n, S has cardinality n, finite.
- $A \text{ and } \mathbf{N}$

then $|A| = \aleph_0$, S has cardinality *aleph null*, infinite.

Uncountable sets

► If there is surjection from A to N but there is not a surjection from N to A.

Operations with functions

• Inverse: When $f : A \rightarrow B$ is a bijection.

 $f^{-1}(b) = a$, where f(a) = b

• Composition: When $g : A \to B$ and $f : B \to C$.

 $f \circ g(a) = f(g(a))$

Extra: Operations with functions

▶ Sums: When $f_1, f_2 : A \rightarrow B$, and B is closed under sums.

 $(f_1 + f_2)(a) = f_1(a) + f_2(a)$

▶ Product: When $f_1, f_2 : A \rightarrow B$, and B is closed under products

 $(f_1f_2)(a) = f_1(a)f_2(a)$

Monotone(Increasing/Decreasing): When f : A → B, and A, B are ordered sets.

$$a_1 \leq a_2$$
 implies $f(a_1) \leq f(a_2)$

Note: Z, **R** and **C** are ordered sets and closed under sums and products.