A pattern makes a conjecture

▶ 1 = 1
▶ 1 = 2 · 1 - 1
▶ 4 = 1 + 3
▶ 3 = 2 · 2 - 1
▶ 9 = 1 + 3 + 5
▶ 5 = 2 · 3 - 1
▶ 16 = 1 + 3 + 5 + 7
▶ 7 = 2 · 4 - 1
▶ 25 = 1 + 3 + 5 + 7 + 9
▶ 9 = 2 · 5 - 1

The conjecture is a formula for squared positive integers:

$$n^2 \stackrel{?}{=} 1 + 3 + 5 + \dots + (2n - 1).$$

The crux

The important idea (valid argument) in the proof is:

Given a propositional function P(n)P(n)
ightarrow P(n+1)

is true for all positive integers n.

The starting point

We need to know for sure that P(n) holds for some integer.

Well, in fact, we need to know P(1) is true! because 1 is the first positive integer.

Induction principle

To prove $\forall n \in \mathbb{Z}^+ P(n)$ is true, complete two steps:

BASIS STEP: Verify that the proposition P(1) is true.

INDUCTIVE STEP:

Show that the conditional statement

 $P(k) \rightarrow P(k+1)$

is true for all k positive integer.

The well ordering property

The proof from class makes one assumption.

Every nonempty set of nonnegative integers has a least element.

Mathematicians take this 'evident property' for granted; that is: it is an axiom.

Strong induction principle

To prove $\forall n \in \mathbb{Z}^+ P(n)$ is true, complete two steps:

BASIS STEP: Verify that the proposition P(1) is true.

INDUCTIVE STEP:

Show that the conditional statement

 $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$

is true for all k positive integer.

Pigeonhole principle

(a)

(b)

FIGURE 1 There Are More Pigeons Than Pigeonholes.

22 students and 7 different languages

(each student checked one language only).

Arabic	Chinese	Dutch	Farsi	Spanish	Urdu	Wolof
=	=			=	-	-
=	=			=		
=	-			=		
=						
-						
9	5	0	0	6	1	1

Then there is at least 4 students that speaks the same language.

Two versions

Simple version

If k is a positive integer and k + 1 or more objects are placed into k boxes, then there is at least one box containing at least two of the objects.

General version

If k, m are positive integers and km + 1 or more objects are placed into k boxes, then there is at least one box containing at least m + 1 of the objects.