A pattern makes a conjecture

$$
\begin{array}{ll}
\bullet 1=1 & \bullet 1=2 \cdot 1-1 \\
\bullet 4=1+3 & \vee 3=2 \cdot 2-1 \\
\bullet 9=1+3+5 & \bullet 5=2 \cdot 3-1 \\
\bullet 16=1+3+5+7 & \vee 7=2 \cdot 4-1 \\
\bullet 25=1+3+5+7+9 & \bullet 9=2 \cdot 5-1
\end{array}
$$

The conjecture is a formula for squared positive integers:

$$
n^{2} \stackrel{?}{=} 1+3+5+\cdots+(2 n-1)
$$

The crux

The important idea (valid argument) in the proof is:

Given a propositional function $P(n)$

$$
P(n) \rightarrow P(n+1)
$$

is true for all positive integers n.

The starting point

We need to know for sure that $P(n)$ holds for some integer.

Well, in fact, we need to know $P(1)$ is true! because 1 is the first positive integer.

Induction principle

To prove $\forall n \in \mathbb{Z}^{+} P(n)$ is true, complete two steps:

BASIS STEP:

Verify that the proposition $P(1)$ is true.

INDUCTIVE STEP:
Show that the conditional statement

$$
P(k) \rightarrow P(k+1)
$$

is true for all k positive integer.

The well ordering property

The proof from class makes one assumption.

> Every nonempty set of nonnegative integers
> has a least element.

Mathematicians take this 'evident property' for granted; that is: it is an axiom.

Strong induction principle

To prove $\forall n \in \mathbb{Z}^{+} P(n)$ is true, complete two steps:

BASIS STEP:

Verify that the proposition $P(1)$ is true.

INDUCTIVE STEP:
Show that the conditional statement

$$
[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)
$$

is true for all k positive integer.

Pigeonhole principle

(a)

(b)

FIGURE 1 There Are More Pigeons Than Pigeonholes.

22 students and 7 different languages
(each student checked one language only).

Arabic	Chinese	Dutch	Farsi	Spanish	Urdu	Wolof
$=$	$=$			$=$	-	-
$=$	$=$			$=$		
$=$	-			$=$		
$=$						
-						
9	5	0	0	6	1	1

Then there is at least 4 students that speaks the same language.

Two versions

Simple version

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing at least two of the objects.

General version

If k, m are positive integers and $k m+1$ or more objects are placed into k boxes, then there is at least one box containing at least $m+1$ of the objects.

