Recurrence relations

A recurrence relation for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence.

Sequence of Factorials

$$
a_{n}=n a_{n-1}
$$

Geometric sequences

$$
b_{n}=x b_{n-1}
$$

Fibonacci sequence

$$
f_{n}=f_{n-1}+f_{n-2}
$$

Initial conditions of a recurrence relation

The initial conditions specify the terms

that precede the terms where

 the recurrence relation can take effect.Sequence of Factorials: $0!=1$

$$
a_{n}=n a_{n-1}=n \cdot(n-1)!=n!
$$

Geometric sequences: $x_{0}=1$

$$
b_{n}=x b_{n-1}=x \cdot x^{n-1}=x^{n}
$$

Fibonacci sequence: $f_{0}=0, f_{1}=1$

$$
f_{n}=f_{n-1}+f_{n-2}=?
$$

Well-defined sequence

For recursively defined sequences, we might not have a closed formula for each term a_{n}. Still:

The sequence is well defined. In other words, for every positive integer n, the value of a_{n} is determined in an unambiguous way.

Fibonacci numbers

A pair of rabbits does not breed until they are 2 months old． After they are 2 months old，each pair of rabbits produces another pair each month．Assume that no rabbits ever die．

		Mont	Repratuing	$\substack{\text { Youm } \\ \text { puis }}$	$\substack{\text { Toul } \\ \text { pais }}$
	2t	1	0	1	1
	$2{ }^{2}$	2	0	1	，
23	2）	${ }^{3}$	＋	1	2
2t	20 ${ }^{2}$	4	＇	2	3
		s	2	3	5
	这数 结	6	3	5	8

FIGURE 1 Rabbits on an Island．

Codeword enumeration

A string of decimal digits is a valid codeword if it contains an even number of 0 digits.

- 1230407869 is valid,
- 120987045608 is not valid.

$$
a_{n}=9 \cdot a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}
$$

Idea: Take out first digit and count all possible substrings divided into: valid and not-valid.

Recursively defined structures

A rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices (no loops or cycles allowed).

The set of rooted trees
BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that $T_{1}, T_{2}, \ldots, T_{n}$ are disjoint rooted trees, then the following is also a rooted tree:

A root r, which is not in any of $T_{1}, T_{2}, \ldots, T_{n}$, and add an edge from r to each of the roots of $T_{1}, T_{2}, \ldots, T_{n}$.

Recursively defined structures

RECURSIVE STEP: Suppose that $T_{1}, T_{2}, \ldots, T_{n}$ are disjoint rooted trees, then the following is also a rooted tree:

A root r, which is not in any of $T_{1}, T_{2}, \ldots, T_{n}$, and add an edge from r to each of the roots of $T_{1}, T_{2}, \ldots, T_{n}$.

FIGURE 2 Building Up Rooted Trees.

Recursive and Iterative algorithms

RECURSIVE:

Successively reduce the desired computation
to the evaluation of the algorithm at smaller integers.

ITERATIVE:

Start with the output of the algorithm at the base cases; and successively apply the recursive definition to find the solution of the algorithm at larger integers.

Recursive and Iterative Fibonacci numbers

ALGORITHM 7 A Recursive Algorithm for Fibonacci Numbers.

procedure fibonacci(n : nonnegative integer)
if $n=0$ then return 0
else if $n=1$ then return 1
else return $\operatorname{fibonacci}(n-1)+\operatorname{fibonacci}(n-2)$
\{output is fibonacci(n) \}

```
ALGORITHM }8\mathrm{ An Iterative Algorithm for Computing Fibonacci Numbers.
procedure iterative fibonacci(n: nonnegative integer)
if }n=0\mathrm{ then return 0
else
    x:=0
    y:=1
    for }i:=1\mathrm{ to }n-
        z:=x+y
        x:=y
        y:=z
    return y
{output is the nth Fibonacci number}
```


Recursive vs. Iterative

- Use iterative algorithm:

If you will compute all or most of previous terms to find solution.
E.g. Fibonacci numbers.

- Use recursive algorithm:

If you will need only need a few of previous solutions.
E.g. Factorization of integers into prime factors.

Recursive algorithm for modular exponentiation

```
ALGORITHM 4 Recursive Modular Exponentiation.
procedure mpower(b,n,m: integers with b>0 and m\geq2,n\geq0)
if }n=0\mathrm{ then
    return 1
else if }n\mathrm{ is even then
    return mpower (b,n/2,m) }\mp@subsup{)}{}{2}\operatorname{mod}
else
    return (mpower (b,\lfloorn/2\rfloor,m) 2 mod m b mod m) mod m
{output is }\mp@subsup{b}{}{n}\operatorname{mod}m\mathrm{ }
```


Proving correctness of a recursive algorithm

```
ALGORITHM 4 Recursive Modular Exponentiation.
procedure mpower(b,n,m: integers with }b>0\mathrm{ and m}\geq2,n\geq0
if }n=0\mathrm{ then
    return 1
else if }n\mathrm{ is even then
    return mpower (b, n/2,m) 2}\boldsymbol{mod}
else
    return (mpower (b,\lfloorn/2\rfloor,m) ' mod m\cdotb mod m) mod m
{output is }\mp@subsup{b}{}{n}\operatorname{mod}m\mathrm{ }
```

Fix b and m integers with $b>0$ and $m \geq 2$. Let
$P(n)$:Algorithm mpower (b, n, m) outputs $b^{n}(\bmod m)$
To prove $\forall n \in \mathbb{N} P(n)$ is true, use strong induction.

Recall Strong Induction

BASIS STEP:

Verify that the proposition $P(1)$ is true.

INDUCTIVE STEP:
Show that the conditional statement

$$
[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)
$$

is true for all k positive integer.

