Recurrence relations

A recurrence relation for a sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence.

Sequence of Factorials

$$a_n = na_{n-1}$$

Geometric sequences

$$b_n = xb_{n-1}$$

Fibonacci sequence

$$f_n = f_{n-1} + f_{n-2}$$

Initial conditions of a recurrence relation The initial conditions specify the terms that precede the terms where the recurrence relation can take effect.

Sequence of Factorials: 0! = 1

$$a_n=na_{n-1}=n\cdot(n-1)!=n!$$

Geometric sequences: $x_0 = 1$

$$b_n = xb_{n-1} = x \cdot x^{n-1} = x^n$$

Fibonacci sequence: $f_0 = 0, f_1 = 1$

$$f_n = f_{n-1} + f_{n-2} = ?$$

For recursively defined sequences, we might not have a closed formula for each term a_n . Still:

The sequence is well defined. In other words, for every positive integer n, the value of a_n is determined in an unambiguous way.

Fibonacci numbers

A pair of rabbits does not breed until they are 2 months old. After they are 2 months old, each pair of rabbits produces another pair each month. Assume that no rabbits ever die.

Reproducing pairs (at least two months old)	Young pairs (less than two months old)	Month	Reproducing pairs	Young pairs	Total pairs
	07 43	1	0	1	1
	et 10	2	0	1	1
0 10	et 10	3	1	1	2
0 40	<i>et to et to</i>	4	1	2	3
<i>a b a b</i>	***	5	2	3	5
****	***	6	3	5	8
	at at the				

FIGURE 1 Rabbits on an Island.

Codeword enumeration

A string of decimal digits is a valid codeword if it contains an even number of 0 digits.

- ► 1230407869 is valid,
- ▶ 120987045608 is not valid.

$$a_n = 9 \cdot a_{n-1} + (10^{n-1} - a_{n-1}) = 8a_{n-1} + 10^{n-1}$$

Idea: Take out first digit and count all possible substrings divided into: valid and not-valid.

Recursively defined structures

A rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices (no loops or cycles allowed).

The set of rooted trees

BASIS STEP: A single vertex *r* is a rooted tree.

RECURSIVE STEP: Suppose that $T_1, T_2, ..., T_n$ are disjoint rooted trees, then the following is also a rooted tree:

A root r, which is not in any of T_1, T_2, \ldots, T_n , and add an edge from r to each of the roots of T_1, T_2, \ldots, T_n .

Recursively defined structures

RECURSIVE STEP: Suppose that $T_1, T_2, ..., T_n$ are disjoint rooted trees, then the following is also a rooted tree:

A root r, which is not in any of T_1, T_2, \ldots, T_n , and add an edge from r to each of the roots of T_1, T_2, \ldots, T_n .

Recursive and Iterative algorithms

RECURSIVE:

Successively reduce the desired computation to the evaluation of the algorithm at smaller integers.

ITERATIVE:

Start with the output of the algorithm at the base cases; and successively apply the recursive definition to find the solution of the algorithm at larger integers.

Recursive and Iterative Fibonacci numbers

ALGORITHM 7 A Recursive Algorithm for Fibonacci Numbers.

procedure *fibonacci*(*n*: nonnegative integer) **if** n = 0 **then return** 0 **else if** n = 1 **then return** 1 **else return** *fibonacci*(n - 1) + *fibonacci*(n - 2) {output is *fibonacci*(n)}

ALGORITHM 8 An Iterative Algorithm for Computing Fibonacci Numbers.

```
procedure iterative fibonacci(n: nonnegative integer)

if n = 0 then return 0

else

x := 0

y := 1

for i := 1 to n - 1

z := x + y

x := y

y := z

return y

{output is the nth Fibonacci number}
```

Recursive vs. Iterative

► Use iterative algorithm:

If you will compute all or most of previous terms to find solution.

E.g. Fibonacci numbers.

► Use recursive algorithm:

If you will need only need a few of previous solutions. E.g. Factorization of integers into prime factors.

Recursive algorithm for modular exponentiation

```
ALGORITHM 4 Recursive Modular Exponentiation.
```

```
procedure mpower(b, n, m: integers with b > 0 and m \ge 2, n \ge 0)
if n = 0 then
return 1
else if n is even then
return mpower(b, n/2, m)^2 \mod m
else
return (mpower(b, \lfloor n/2 \rfloor, m)^2 \mod m \cdot b \mod m) \mod m
{output is b^n \mod m}
```

Proving correctness of a recursive algorithm

```
ALGORITHM 4 Recursive Modular Exponentiation.

procedure mpower(b, n, m): integers with b > 0 and m \ge 2, n \ge 0)

if n = 0 then

return 1

else if n is even then

return mpower(b, n/2, m)^2 \mod m

else

return (mpower(b, \lfloor n/2 \rfloor, m)^2 \mod m \cdot b \mod m) \mod m

{output is b^n \mod m}
```

```
Fix b and m integers with b > 0 and m \ge 2. Let
```

P(n) :Algorithm *mpower*(b, n, m) outputs $b^{n}(\mathbf{mod } m)$

To prove $\forall n \in \mathbb{N} P(n)$ is true, use strong induction.

Recall Strong Induction

BASIS STEP:

Verify that the proposition P(1) is true.

INDUCTIVE STEP:

Show that the conditional statement

 $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$

is true for all k positive integer.