
Recurrence relations

A recurrence relation for a sequence {an} is

an equation that expresses an in terms of

one or more of the previous terms of the sequence.

Sequence of Factorials

an = nan−1

Geometric sequences

bn = xbn−1

Fibonacci sequence

fn = fn−1 + fn−2



Initial conditions of a recurrence relation

The initial conditions specify the terms

that precede the terms where

the recurrence relation can take effect.

Sequence of Factorials: 0! = 1

an = nan−1 = n · (n − 1)! = n!

Geometric sequences: x0 = 1

bn = xbn−1 = x · xn−1 = xn

Fibonacci sequence: f0 = 0, f1 = 1

fn = fn−1 + fn−2 = ?



Well-defined sequence

For recursively defined sequences, we might not have a closed

formula for each term an. Still:

The sequence is well defined. In other words,

for every positive integer n, the value of an

is determined in an unambiguous way.



Fibonacci numbers

A pair of rabbits does not breed until they are 2 months old.

After they are 2 months old, each pair of rabbits produces

another pair each month. Assume that no rabbits ever die.



Codeword enumeration

A string of decimal digits is a valid codeword if it contains an

even number of 0 digits.

I 1230407869 is valid,

I 120987045608 is not valid.

an = 9 · an−1 + (10n−1 − an−1) = 8an−1 + 10n−1

Idea: Take out first digit and count all possible substrings

divided into: valid and not-valid.



Recursively defined structures

A rooted tree consists of a set of vertices containing a

distinguished vertex called the root, and edges connecting

these vertices (no loops or cycles allowed).

The set of rooted trees

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1,T2, . . . ,Tn are

disjoint rooted trees, then the following is also a rooted tree:

A root r , which is not in any of T1,T2, . . . ,Tn, and add an

edge from r to each of the roots of T1,T2, . . . ,Tn.



Recursively defined structures

RECURSIVE STEP: Suppose that T1,T2, . . . ,Tn are

disjoint rooted trees, then the following is also a rooted tree:

A root r , which is not in any of T1,T2, . . . ,Tn, and add an

edge from r to each of the roots of T1,T2, . . . ,Tn.



Recursive and Iterative algorithms

RECURSIVE:

Successively reduce the desired computation

to the evaluation of the algorithm at smaller integers.

ITERATIVE:

Start with the output of the algorithm at the base cases;

and successively apply the recursive definition to

find the solution of the algorithm at larger integers.



Recursive and Iterative Fibonacci numbers



Recursive vs. Iterative

I Use iterative algorithm:

If you will compute all or most of previous terms to find

solution.

E.g. Fibonacci numbers.

I Use recursive algorithm:

If you will need only need a few of previous solutions.

E.g. Factorization of integers into prime factors.



Recursive algorithm for modular exponentiation



Proving correctness of a recursive algorithm

Fix b and m integers with b > 0 and m ≥ 2. Let

P(n) :Algorithm mpower(b, n,m) outputs bn(mod m)

To prove ∀n ∈ N P(n) is true, use strong induction.



Recall Strong Induction

BASIS STEP:
Verify that the proposition P(1) is true.

INDUCTIVE STEP:
Show that the conditional statement

[P(1) ∧ P(2) ∧ · · · ∧ P(k)]→ P(k + 1)

is true for all k positive integer.


