# Discrete Mathematics MATH 363 

Instructor Laura Eslava

McGill University

Winter 2016


## Overview

Instructor's information

Course evalution

Sources

Overview of contents

# Instructor's information 

## Course evalution

## Sources

Overview of contents

## Instructor's whereabouts


Instructor: Laura Eslava

## Office:

Burnside Hall 1017
Office Hours:
Wednesdays 14:30-16:00 hrs. or by appointment.

Do not hesitate to ask for help.

# Instructor's information 

Course evalution

## Sources

Overview of contents

## Prerequisites

$\triangleright$ MATH 263 and MATH 264
$\triangleright$ Restricted to students of the Faculty of Engineering

## Prerequisites

- MATH 263 and MATH 264
$\triangleright$ Restricted to students of the Faculty of Engineering
$\triangleright$ Interest for puzzles and riddles is a plus.

You will enjoy the course better if you see it as a challenge.

## Assignments

Assignments will count for the $20 \%$ of your final grade.
$\triangleright$ There will be 12 assignments in total.

## Assignments

Assignments will count for the $20 \%$ of your final grade.
$\triangleright$ There will be 12 assignments in total.
$\triangleright$ Only your best 10 of 12 assignments will be considered.

## Assignments

Assignments will count for the $20 \%$ of your final grade.
$\triangleright$ There will be 12 assignments in total.
$\triangleright$ Only your best 10 of 12 assignments will be considered.
$\triangleright$ Please submit the homework to the homework slot at Burnside Hall 1005 by 5pm on the due date.

## Assignments

Assignments will count for the $20 \%$ of your final grade.
$\triangleright$ There will be 12 assignments in total.
$\triangleright$ Only your best 10 of 12 assignments will be considered.
$\triangleright$ Please submit the homework to the homework slot at Burnside Hall 1005 by 5pm on the due date.
$\triangleright$ Late assignments will not be accepted.

## Final and Midterm exams

Exams will count, either

> Midterm $20 \%+$ Final $60 \%$ or Final $80 \%$
$\triangleright$ The exams are closed-book and closed-notes.
$\triangleright$ No calculators are permitted during the exams.

## Final and Midterm exams

Exams will count, either

> Midterm $20 \%+$ Final $60 \%$ or Final $80 \%$
$\triangleright$ The exams are closed-book and closed-notes.
$\triangleright$ No calculators are permitted during the exams.

Important date: Midterm on the 25th of February.

## Academic Integrity

You may talk with other students about the assignments and consult sources like books and websites.

But you must acknowledge all sources and collaborations.

## Academic Integrity

You may talk with other students about the assignments and consult sources like books and websites.

But you must acknowledge all sources and collaborations.
$\triangleright$ Reference any source and the names of the students you talk to at the top of your assignment.

## Academic Integrity

You may talk with other students about the assignments and consult sources like books and websites.

But you must acknowledge all sources and collaborations.
$\triangleright$ Reference any source and the names of the students you talk to at the top of your assignment.
$\triangleright$ If you worked alone, write 'I worked alone.' at the top of your assignment.

## Academic Integrity

You may talk with other students about the assignments and consult sources like books and websites.

## But you must acknowledge all sources and collaborations.

$\triangleright$ Reference any source and the names of the students you talk to at the top of your assignment.

- If you worked alone, write 'I worked alone.' at the top of your assignment.
$\triangleright$ Mere copying is not permitted. Students must write up their own assignments separately.

Instructor's information

Course evalution

Sources

Overview of contents

## Textbook

Kenneth H. Rosen, Discrete Mathematics and its applications, seventh edition, McGrawHill.

Webpage: Use the online learning center
www.mhhe.com/rosen


## Textbook

Kenneth H. Rosen, Discrete Mathematics and its applications, seventh edition, McGrawHill.

Webpage: Use the online learning center
www.mhhe.com/rosen


You know it: Mastery of the material requires that the students devote a significant amount of time to reading the textbook and solving problems.

## Course webpage

There you will find:
$\triangleright$ A log of the topics covered in each lecture.
$\triangleright$ Assignments and solutions.
$\triangleright$ Possibly extra material.
http://www.math.mcgill.ca/eslava/Courses/math363-w16

## Instructor's information

## Course evalution

## Sources

Overview of contents

## A list of riddles

In the following slides there will be several puzzles.
$\triangleright$ Take a piece of paper and write down each of them, at the end of the class there will be time for you to think about them.

## Topic 1: Propositional logic

Logic is the basis of all mathematical reasoning.

## Topic 1: Propositional logic

Logic is the basis of all mathematical reasoning.
$\triangleright$ Spot the difference between statements:
There is a key that opens every door.
VS.
Every door has a key that opens it.

## Topic 1: Propositional logic

## Logic is the basis of all mathematical reasoning.

$\triangleright$ Spot the difference between statements:
There is a key that opens every door.
VS.
Every door has a key that opens it.
$\triangleright$ Why is the following argument incorrect?
If you do every problem in the textbook, then you will learn discrete mathematics.
You learned discrete mathematics. Therefore, you did every problem in the textbook.

## Topic 1: Propositional logic

Logic Puzzle
There is an island that has two kinds of inhabitants, knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people $A$ and $B$.
A: 'B is a knight'
B: 'The two of us are opposite types'
What are $A$ and $B$ ?

## Topic 2: Proofs and induction

To understand mathematics, we must understand what makes up a correct mathematical argument, that is, a proof.

## Topic 2: Proofs and induction

To understand mathematics, we must understand what makes up a correct mathematical argument, that is, a proof.
$\triangleright$ Induction is a beautiful idea:
Tilt an infinite number of dominos with just one movement.

We will see what this means for mathematics.


## Topic 3: Sets and functions

Functions are used to represent the computational complexity of algorithms, to study the size of sets, etc.

## Topic 3: Sets and functions

Functions are used to represent the computational complexity of algorithms, to study the size of sets, etc.

You will understand the difference between exponential, polynomial and linear growth.
$\triangleright$ Danger of epidemics
$\triangleright$ Why nuclear weapons are so destructive?
$\triangleright$ How fast can computers become?


## Topic 3: Sets and functions

An old legend
Vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful, hand-made chessboard.

## Topic 3: Sets and functions

An old legend
Vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful, hand-made chessboard.

The king asked what he would like in return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third etc.

## Topic 3: Sets and functions

An old legend
Vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful, hand-made chessboard.

The king asked what he would like in return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third etc.

The king readily agreed but there simply was not enough rice in the whole world for the final squares.

## Topic 3: Sets and functions

An old legend
Vizier Sissa Ben Dahir presented an Indian King Sharim with a beautiful, hand-made chessboard.

The king asked what he would like in return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains on the second, four grains on the third etc.

The king readily agreed but there simply was not enough rice in the whole world for the final squares.
$\triangleright$ The requirement of grains on the 21th square demanded over a million grains of rice.


## Topic 3: Sets and functions

Count people in a subgroup
In a group of 89 people there are
45 Activists,
23 Biologists,
27 Canadians.
How many Canadian activists are
 there?

## Topic 4: Elementary number theory

The part of mathematics devoted to the study of the set of integers and their properties is known as number theory.

## Topic 4: Elementary number theory

The part of mathematics devoted to the study of the set of integers and their properties is known as number theory.
$\triangleright$ Modular arithmetic is everywhere.

## Topic 4: Elementary number theory

The part of mathematics devoted to the study of the set of integers and their properties is known as number theory.
$\triangleright$ Modular arithmetic is everywhere.
It operates with the remainders of integers when they are divided by a fixed positive integer.

## Topic 4: Elementary number theory

The part of mathematics devoted to the study of the set of integers and their properties is known as number theory.
$\triangleright$ Modular arithmetic is everywhere.
It operates with the remainders of integers when they are divided by a fixed positive integer.
$\triangleright$ We use this to count time (add seconds, minutes and hours).

## Topic 4: Elementary number theory

The part of mathematics devoted to the study of the set of integers and their properties is known as number theory.
$\triangleright$ Modular arithmetic is everywhere.
It operates with the remainders of integers when they are divided by a fixed positive integer.
$\triangleright$ We use this to count time (add seconds, minutes and hours).
$\triangleright$ To encript messages and decode them.

## Topic 4: Elementary number theory

Measuring puzzle
You have a 3 and a 5 litre water container, each container has no markings except for that which gives you it's total volume. You also have a running tap. You must use the containers and the tap in such away as to exactly measure out 1 litres of water.

How would you measure it?


## Topic 5: Counting and probability

Probability theory now plays an essential role in computer science and the analysis of algorithms.

## Topic 5: Counting and probability

Probability theory now plays an essential role in computer science and the analysis of algorithms.
$\triangleright$ Probabilistic algorithms can be used to solve many problems that cannot be easily or practically solved by deterministic algorithms.

## Topic 5: Counting and probability

Probability theory now plays an essential role in computer science and the analysis of algorithms.
$\triangleright$ Probabilistic algorithms can be used to solve many problems that cannot be easily or practically solved by deterministic algorithms.

With a probabilistic algorithm, instead of always following the same steps when given the same input, as a deterministic algorithm does, the computer makes one or more random choices.

## Topic 5: Counting and probability

Birthday Paradox
What is the probability that, in a group of $N$ people, there is at least one pair of people who have the same birthday?

## Topic 5: Counting and probability

Birthday Paradox
What is the probability that, in a group of $N$ people, there is at least one pair of people who have the same birthday?

Intuitively, one may think that this probability is small unless we have a large group of people. But the chances are about $50 \%$ for $N=23$.

## Topic 5: Counting and probability

Birthday Paradox
What is the probability that, in a group of $N$ people, there is at least one pair of people who have the same birthday?

Intuitively, one may think that this probability is small unless we have a large group of people. But the chances are about $50 \%$ for $N=23$.

Count how many students in the class share their birthdays?


## Topic 6: Graph theory

Problems in almost every conceivable discipline can be solved using graph models.

## Topic 6: Graph theory

Problems in almost every conceivable discipline can be solved using graph models.
$\triangleright$ Efficiently connecting cities with highways.


## Topic 6: Graph theory

Problems in almost every conceivable discipline can be solved using graph models.
$\triangleright$ Efficiently connecting cities with highways.
$\triangleright$ Understanding interrelations between departments of a company.


## Topic 6: Graph theory

Problems in almost every conceivable discipline can be solved using graph models.
$\triangleright$ Efficiently connecting cities with highways.
$\triangleright$ Understanding interrelations between departments of a company.
$\triangleright$ Representing collaboration
 networks.

## Test yourself

Come back to the puzzles you have written down.
$\triangleright$ Make groups to discuss if you have heard of these riddles and if you know how to solve them.

## Test yourself

Come back to the puzzles you have written down.
$\triangleright$ Make groups to discuss if you have heard of these riddles and if you know how to solve them.
$\triangleright$ Write down your solutions or ideas about how to solve these problems.

## Test yourself

Come back to the puzzles you have written down.
$\triangleright$ Make groups to discuss if you have heard of these riddles and if you know how to solve them.
$\triangleright$ Write down your solutions or ideas about how to solve these problems.
$\triangleright$ Hand this in to the instructor at the end of the class.

## Test yourself

Come back to the puzzles you have written down.
$\triangleright$ Make groups to discuss if you have heard of these riddles and if you know how to solve them.
$\triangleright$ Write down your solutions or ideas about how to solve these problems.
$\triangleright$ Hand this in to the instructor at the end of the class.

This will not be graded.

## A poll

Write down in a paper:

1. Your name,
2. Major and year,
3. Why you are taking MATH 363,
4. Two of your favorite courses so far,
5. Two courses you are looking forward to take.

Hand this in to the instructor.
Have a nice beginning of term!

