MATH 363 Discrete Mathematics Midterm

- Write down your solutions, no justification is needed (+1pt).
 - 1. Simplify: $\neg[(p \lor q) \lor \neg q] \land p$.
 - 2. Draw the Venn Diagram of the following set $(B \cup C) \setminus A$.
 - 3. List the elements of $S = \{n \in \mathbb{N} : n < 52, 7 \text{ divides } n\}.$
 - 4. Determine if the following is true
 - -n! is $O(n^n)$,
 - $-n^5 n$ is $O(n^4)$.
 - 5. Define when a compound proposition is a Tautology.
 - 6. State the pigeonhole principle.
 - 7. Give the encoding function of Caesar's cipher.
 - 8. Describe how to encode x using the RSA encryption with key $(n = 3 \cdot 11, e = 7)$.
- Write down your solutions and **show your work** (+2pt).
 - 1. Negate: $\forall x \in \mathbb{R} \forall y \in \mathbb{R} (xy \neq 0, \text{ or } y = 0 \text{ or } x = 0).$
 - 2. Let $U = \{1, 3, 5, 7, 9, 11\}$, $A = \{n \in U : 3 \le n \le 9\}$ and $B = \{n \in U : n \ge 6\}$. Use a bit string to describe the set $A \cap \overline{B}$.

- 3. Let $f : \mathbf{Z} \to \mathbf{R}$ be defined by $f(n) = n^2$.
 - What is the domain of f?
 - Is f injective?
- 4. Give the prime decomposition of 12!.
- 5. Solve the congruence $4x = 9 \pmod{15}$.
- 6. Compute the following sum $\sum_{i=1}^{4} |4-2i|$.
- Write down your solutions (+2pt) and justify (+1pt).
 - 1. Give a big-O estimate for $(72n^2 50n)(3n + \log n^3)$.
 - 2. Prove that if n is an integer, then 2 divides $n^2 + n$.
 - 3. Let 0 < d < n be integers.

How many positive integers not exceeding n are divisible by d?