MATH 363 Discrete Mathematics Midterm

- Write down your solutions, no justification is needed $(+1 \mathrm{pt})$.

1. Simplify: $\neg[(p \vee q) \vee \neg q] \wedge p$.
2. Draw the Venn Diagram of the following set $(B \cup C) \backslash A$.
3. List the elements of $S=\{n \in \mathbb{N}: n<52,7$ divides $n\}$.
4. Determine if the following is true
$-n!$ is $O\left(n^{n}\right)$,
$-n^{5}-n$ is $O\left(n^{4}\right)$.
5. Define when a compound proposition is a Tautology.
6. State the pigeonhole principle.
7. Give the encoding function of Caesar's cipher.
8. Describe how to encode x using the RSA encryption with key $(n=3 \cdot 11, e=7)$.

- Write down your solutions and show your work (+2pt).

1. Negate: $\forall x \in \mathbb{R} \forall y \in \mathbb{R}(x y \neq 0$, or $y=0$ or $x=0)$.
2. Let $U=\{1,3,5,7,9,11\}, A=\{n \in U: 3 \leq n \leq 9\}$ and $B=\{n \in U: n \geq 6\}$.

Use a bit string to describe the set $A \cap \bar{B}$.
3. Let $f: \mathbf{Z} \rightarrow \mathbf{R}$ be defined by $f(n)=n^{2}$.

- What is the domain of f ?
- Is f injective?

4. Give the prime decomposition of 12 !.
5. Solve the congruence $4 x=9(\bmod 15)$.
6. Compute the following sum $\sum_{i=1}^{4}|4-2 i|$.

- Write down your solutions $(+2 \mathrm{pt})$ and justify $(+1 \mathrm{pt})$.

1. Give a big-O estimate for $\left(72 n^{2}-50 n\right)\left(3 n+\log n^{3}\right)$.
2. Prove that if n is an integer, then 2 divides $n^{2}+n$.
3. Let $0<d<n$ be integers.

How many positive integers not exceeding n are divisible by d ?

