MATH 363 Discrete Mathematics Midterm

- Write down your solutions, no justification is needed. (+1pt)
 - 1. Simplify: $\neg[\neg(p \lor q) \land \neg p]$.
 - 2. Draw the Venn Diagram of the following set $C \setminus (A \cup B)$.
 - 3. List the elements of $S = \{n \in \mathbb{N} : n < 35, n = 3 \pmod{7}\}.$
 - 4. Determine if the following is true.
 - $-n^2\log n$ is $O(n^3)$,
 - n! is $O(n^2)$.
 - 5. Define when a compound proposition is a Contradiction.
 - 6. State the two steps of a proof by induction.
 - 7. Give the decoding function of Caesar's cipher.
 - 8. Describe how to encode x using the RSA encryption with key $(n = 5 \cdot 7, e = 5)$.
- Write down your solutions and **show your work** (+2pt).
 - 1. Negate: $\forall x \in \mathbb{N} \exists y \in \mathbb{N}(x \text{ divides } y \text{ and } y^2 \text{ divides } x).$
 - 2. Let $U = \{0, 2, 4, 6, 8, 10\}, A = \{n \in U : 3 \le n \le 9\}$ and $B = \{n \in U : n \le 5\}$. Use a bit string to describe the set $\bar{A} \cup B$

- 3. Let $f : \mathbf{Z} \to \mathbf{R}$ be defined by $f(n) = n^2$.
 - What is the codomain of f?
 - What is the preimage of n = 4?
- 4. Give the prime decomposition of $\prod_{i=3}^{7}(2i)$.
- 5. Solve the congruence $5x = 1 \pmod{12}$.
- 6. Compute the following sum $\sum_{i=2}^{5} (2i)^2$.
- Write down your solutions (+2pt) and justify (+1pt).
 - 1. Give a big-O estimate for $f(n) = (n^2 + n \log n)(3n 100)$.
 - 2. Prove that if n is an integer, then 3 divides $n^3 n$.
 - 3. Let 0 < d < n and k be integers.

How many positive integers not exceeding kn are congruent to d?