MATH 363 Discrete Mathematics Midterm

- Write down your solutions, no justification is needed. $(+1 \mathrm{pt})$

1. Simplify: $\neg[\neg(p \vee q) \wedge \neg p]$.
2. Draw the Venn Diagram of the following set $C \backslash(A \cup B)$.
3. List the elements of $S=\{n \in \mathbb{N}: n<35, n=3(\bmod 7)\}$.
4. Determine if the following is true.

- $n^{2} \log n$ is $O\left(n^{3}\right)$,
$-n!$ is $O\left(n^{2}\right)$.

5. Define when a compound proposition is a Contradiction.
6. State the two steps of a proof by induction.
7. Give the decoding function of Caesar's cipher.
8. Describe how to encode x using the RSA encryption with key $(n=5 \cdot 7, e=5)$.

- Write down your solutions and show your work $(+2 \mathrm{pt})$.

1. Negate: $\forall x \in \mathbb{N} \exists y \in \mathbb{N}\left(x\right.$ divides y and y^{2} divides $\left.x\right)$.
2. Let $U=\{0,2,4,6,8,10\}, A=\{n \in U: 3 \leq n \leq 9\}$ and $B=\{n \in U: n \leq 5\}$.

Use a bit string to describe the set $\bar{A} \cup B$
3. Let $f: \mathbf{Z} \rightarrow \mathbf{R}$ be defined by $f(n)=n^{2}$.

- What is the codomain of f ?
- What is the preimage of $n=4$?

4. Give the prime decomposition of $\prod_{i=3}^{7}(2 i)$.
5. Solve the congruence $5 x=1(\bmod 12)$.
6. Compute the following sum $\sum_{i=2}^{5}(2 i)^{2}$.

- Write down your solutions $(+2 \mathrm{pt})$ and justify $(+1 \mathrm{pt})$.

1. Give a big-O estimate for $f(n)=\left(n^{2}+n \log n\right)(3 n-100)$.
2. Prove that if n is an integer, then 3 divides $n^{3}-n$.
3. Let $0<d<n$ and k be integers.

How many positive integers not exceeding $k n$ are congruent to d ?

