MATH 363 Discrete Mathematics
 Assignment 10

Due by March 30th

1. (2pt each) Let $A=\{1, \ldots, 5\}$. Give an example of a relation on A which

- is transitive
- is transitive but not reflexive
- is reflexive but not symmetric
- is antisymmetric

List the elements, draw the digraph and matrix representing the relations. For example

$$
\begin{aligned}
& R=\{(1,1),(3,2),(3,5),(4,3),(5,4),(5,5)\} \\
& M_{R}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

2. (2pt each) Compute the compositions R^{2} and R^{3} of the relation R above, express them as a digraph and as a matrix.
3. $(\mathbf{2 p t})$ Prove that a relation is antisymmetric if and only if its digraph has no cycles of length 2 .
4. (2pt) Fix a positive integer m. For any $a, b \in \mathbb{Z}$, we say that a is related to b if: $a=b \bmod m$. Show that this defines an equivalence relation in \mathbb{Z} and give the classes of these.
5. (3pt) Consider a graph $G=(V, E)$. For any $v, w \in V$, we say that v is related to w (write $v \sim w$) if $v=w$ or there is a path from v to w. Show that this defines an equivalence relation in V.
6. (1pt each) Draw a graph $G(V, E)$ with $|V|=9$ and two vertices $v, w \in V$ in the same connected component; mark the following:
i) A simple path from v to w of length 5 ,
ii) A closed path going through v but which it is not a cycle,
iii) A path from v to w which does not repeat edges but it does repeat vertices,
$i v)$ The vertices adjacent to v;
$v)$ What is the degree of w ?
7. (3pt each) Consider a path $P=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)$ connecting u to v
i) Show that if $u \neq v$, then there is a simple path from u to v.
ii) Show that if $u=v$ and there are no repeated edges in the path, then there is a subpath

$$
Q=\left(x_{i}, x_{i+1}, \ldots, x_{k-1}, x_{k}\right)
$$

which is a cycle.
8. (2pt) Draw the graph G with adjacency matrix M, and give the partition of its vertices into connected components.

$$
M=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

9. (3pt) Describe the strongly connected components and weakly connected components of R^{3} in exercise 2 . above.
10. (2pt) Use the handshaking theorem to show that any (undirected) graph has an even number of vertices of odd degree.
11. (Extra: 3pt) Give the pseudocode and apply Warshall's algorithm to the relation R above and give the digraph representing the resulting relation.
