
MATH 363 Discrete Mathematics Assignment 2

Due by January 27th

- 1. (**2pt each**) Express each of these specifications using propositional logic (Hint: define 3 propositions and write the statements below in terms of the propositions you define.)
 - i) If the system is in multiuser state, the kernel is functioning.
 - ii) The kernel is not functioning or the system is in interrupt mode.
 - *iii*) If the system is not in multiuser state, then it is in interrupt mode.
 - iv) The system is not in interrupt mode.

 \sim **Definition:** A collection of (compound) propositions is *consistent* if there is an assignment of truth values to each of the proposition variables involved such that every proposition in the collection is true.

- 2. (3pt) Determine whether the specifications in the previous exercise is a consistent collection of propositions.
- 3. (3pt each)Find out the output of these logic circuits.

- 4. (3pt each) Construct a logic circuit using inverters, OR gates, and AND gates that produces the output $(p \land \neg r) \lor (\neg q \land r)$ from input bits p, q, and r.
- 5. (3pt each) Negate the statements, and find a counterexample to either the statement or its negation.
 - i) $\forall x \in \mathbb{R} (|x| > 0)$
 - *ii*) \forall integer x > 4, $(x^2 \le 10)$
 - *iii*) $\exists x \mathbb{R} \ \forall y \in \mathbb{R} \ (xy = 1)$
- 6. (4pt each) Express each of these system specifications using predicates, quantifiers and logical connectives.
 - *i*) No directories in the file system can be opened and no files can be closed when system errors have been detected.
 - *ii*) The file system cannot be backed up if there is a user currently logged on.
- 7. (2pt) Determine whether $\forall x(P(x) \leftrightarrow Q(x))$ and $\forall xP(x) \leftrightarrow \forall Q(x)$ are logically equivalent. Justify your answer.