MATH 363 Discrete Mathematics Assignment 3

Due by February 3rd

Some definitions to remember:
A non-negative integer n is a perfect square if there exists an integer k such that $n=k^{2}$. The factorial numbers are defined as $n!=1 \cdot 2 \cdot 3 \cdots n$ for all non-negative integers.

1. $(\mathbf{2 p t})$ Prove or disprove: if x is a nonzero real number, then $x^{2}+1 / x^{2}>2$.
2. (3pt) Determine whether $\sqrt[3]{2}$ is rational.
3. $(\mathbf{4} \mathbf{p t})$ Prove that either $2 \cdot 3^{100}+5$ or $2 \cdot 3^{100}+6$ is not a perfect square.
4. (3pt each) Consider a student with major on Software Engineering and minor in French literature that is taking 6 classes this term.

- All her midterms are going to be on the week (Monday-Friday) before Reading week. Show that she is going to have a day with two midterms.
- Show that she is taking either 3 classes that are all related or 3 classes that have no relation between each other.

5. (4pt) How many distinct numbers must be selected from the set $\{1,3,5,7,9,11,13\}$ to guarantee that at least one pair of these numbers add up to 14 ?
6. (3pt) Prove or disprove that you can use dominoes to tile the standard checkerboard with all four corners removed.
7. (3pt) Prove or disprove that you can use dominoes to tile the standard checkerboard with only two opposite corners removed.
8. (1pt each) Let $P(n)$ be the statement that $1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$ for the positive integer n.

- What is the statement $P(1)$?
- Show that $P(1)$ is true, completing the basis step of the proof.
- What is the inductive hypothesis?
- What do you need to prove in the inductive hypothesis?
- Explain why these steps show that $\forall n \in \mathbb{Z}^{+} P(n)$ is true.

9. (4pt) Use the same steps as in the previous example to prove that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots \frac{1}{n(n+1)}=1-\frac{1}{n+1}
$$

10. (4pt) Prove using induction that $3^{n}<n$! if n is a positive integer and $n>6$.
11. (2pt) Explain what is wrong with the following proof:

- Theorem: For every positive integer n,

$$
\sum_{i=1}^{n} i=\frac{(n+1 / 2)^{2}}{2}
$$

Proof. We will prove it by induction: The formula is true for $n=1$, this is the basis step. Now, suppose that

$$
\sum_{i=1}^{n} i=\frac{(n+1 / 2)^{2}}{2}
$$

Then, using the inductive hypothesis on the second equality,

$$
\begin{aligned}
\sum_{i=1}^{n+1} i & =\left(\sum_{i=1}^{n} i\right)+(n+1) \\
& =\frac{(n+1 / 2)^{2}}{2}+(n+1) \\
& =\frac{\left(n^{2}+n+1 / 4\right)+2(n+1)}{2} \\
& =\frac{n^{2}+3 n+9 / 4}{2} \\
& =\frac{(n+3 / 2)^{2}}{2} \\
& =\frac{[(n+1)+1 / 2]^{2}}{2} .
\end{aligned}
$$

Thus, we have completed the inductive step and the theorem is true.

