MATH 363 Discrete Mathematics
 Assignment 4

Due by February 10th

1. (1pt each) Draw the Venn Diagram of the following sets.
i) $[(A \cup B) \backslash C] \cup(A \cap C)$
ii) $\left(A^{c} \cup B\right) \cap C$
2. (1pt each) Let $U=\left\{x \in Z: x^{2}<10\right\}$, represent the follows sets using bit strings. Use the increasing order to list the elements in U.
i) $A=\{3,-2,0,1,-3\}$
iv) $(A \cap C)$
ii) $B=\{x \in U, x>0\}$
v) $(A \cup B)$
iii) $C=\{x \in U,|x-1|<2\}$
vi) $[(A \cup B) \backslash C] \cup(A \cap C)$
3. (2pt each) Let A, B be sets. Show that
i) $(A \cap B) \subseteq(A \cup B)$
ii) $A \cup B=A \cup(B \backslash A)$
4. (2pt each) Let $A=\{\emptyset, a, b,\{a,\{b\}\}\}$
i) List all the elements of $B=\mathcal{P}(A)$
ii) If $\{\emptyset\} \subseteq \mathcal{P}(C)$, what can you conclude about C ? Justify your answer.
iii) If $\{\emptyset\} \in \mathcal{P}(C)$, what can you conclude about C ? Justify your answer.
5. (3pt each) Let A and B be distinct non-empty sets
i) Show that $A \times B \neq B \times A$,
ii) Give a bijection between $A \times B$ and $B \times A$.
6. (3pt) Show that if $A \cap C=B \cap C$ and $A \cup C=B \cup C$, then $A=B$
7. (2pt each) Let $A_{i}=\{1,2, \ldots, i\}$. Give a description of the following sets.
i) $A_{2 i} \backslash A_{2 i-1}$
iii) $\bigcap_{j=3 i-1}^{3 i+1} A_{j}$
ii) $\bigcap_{i=1}^{40}\left(A_{2 i} \backslash A_{2 i-1}\right)$
iv) $\bigcup_{i=2}^{4}\left(\bigcap_{j=3 i-1}^{3 i+1} A_{j}\right)$
8. (2pt) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\lceil x\rceil-\lfloor x\rfloor$. Show that $f(x)=0$ if $x \in \mathbf{Z}$ and $f(x)=1$ if $x \notin \mathbf{Z}$.
9. (2pt) Prove that for any non-empty countable set S, there exists a injective function from S to \mathbf{N}.
10. (3pt) Show that the set of points in the circle $C=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=1\right\}$ have the same cardinality that the points in the interval $I=[0,1)$.
11. (1pt) Let P be the set containing the 5 pythagorean solids. Is P countable?
12. (2pt each) Let $f, g, h: P \rightarrow \mathbf{N}$ be functions such that, if $p \in P$ then

$$
\begin{array}{ll}
f(p)=n & \text { if } p \text { has } n \text { faces } \\
g(p)=m & \text { if } p \text { has } m \text { edges } \\
h(p)=v & \text { if } p \text { has } v \text { vertices }
\end{array}
$$

For example, $f($ cube $)=6, g($ cube $)=12, h($ cube $)=8$. (Justify your answers)
i) Are the functions f and g injective?
ii) Are the functions f and g surjective?
iii) What is the range of g and $f+h$?
13. ($\mathbf{2} \mathbf{p t}$ each) Find the value of the following sums. Show your work.
i) $\sum_{i=1}^{40}(3+5 i)$
ii) $\sum_{i=0}^{10}(1 / 3)^{i}$
14. (3pt each) Find the value of the following sums. Show your work.
i) $\sum_{i=2}^{4} \sum_{j=1}^{2 i-3} 2 j$
ii) $\sum_{i=2}^{4} \sum_{j=1}^{i}\lfloor 3 j / 2\rfloor$
15. (2pt) Give an example of a function from $\mathbf{N} \rightarrow \mathbf{N}$ which is not injective and it grows at least exponentially (that is, is $\Omega\left(a^{n}\right)$ for some $a>1$).
16. (1pt each) Determine whether the following statements are true.
i) $2+x^{3}$ is $O\left(x^{2}\right)$
ii) $2+x^{3}$ is $\Omega\left(x^{2}\right)$
iii) $\lfloor 2 x\rfloor$ is $O(x)$
17. (1pt each) Give a big-O estimate for the following functions
i) $\left(n^{3}+n^{2} \log n\right)(3-2 \log n)$
ii) $\left(n!-n^{5}\right)\left(3^{n}+5^{n}\right)$
18. (2pt each) Use the definition of ' $f(x)$ is $O(g(x)), \Omega(g(x)), \Theta(g(x))^{\prime}$ to show that
i) $n^{3} \log \left(n^{2}\right)$ is $\Omega\left(n^{3}\right)$,
ii) $\log \left(3^{n}\right)$ is $O(n)$,
iii) $n^{3}+5 n^{2}+40$ is $\Theta\left(n^{3}\right)$.
19. (2pt) Describe an algorithm for finding both the largest and the smallest integers in a finite sequence of integers.
20. (3pt) Determine the worst-case performance of the algorithm above.
21. (3pt) Determine the least number of comparisons, or best-case performance required to find the maximum of a sequence of n integers (using the algorithm from class).

