MATH 363 Discrete Mathematics
 Assignment 5

Due by February 17th

1. (2pt)Prove or disprove that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.
2. $(\mathbf{2 p t})$ Prove or disprove that $a \mid b c$ implies that either $a \mid b$ or $a \mid c$.
3. (2pt) Decode the following message encripted with Caesar's cipher: Darorwv olyh lq Arfklplofr.
4. (3pt) Let $a, m \in \mathbf{Z}$ and $m>0$. Find a formula for the integer with smallest absolute value that is conruent to $a(\bmod m)$.
5. $(\mathbf{2 p t})$ Consider the linear congruence generated by $x_{n+1}=2 x_{n}(\bmod 18)$ with seed $x_{0}=17$. How many pseudorandom numbers can we generate before numbers start repeating?
6. (3pt) Prove that there are infinitely many prime numbers.
7. (1pt each) Find the following values and express them as product of prime numbers
i) $\operatorname{gcd}(18,99)$
ii) $\operatorname{lcm}(18,99)$
iii) $\operatorname{gcd}\left(2^{3} \cdot 3 \cdot 5^{2}, 2 \cdot 7 \cdot 5^{4}\right)$
iv) $\operatorname{lcm}\left(2^{3} \cdot 3 \cdot 5^{2}, 2 \cdot 7 \cdot 5^{4}\right)$
8. (3pt) Prove or disprove that for any positive integers a, b,

$$
a \cdot b=g c d(a, b) \cdot \operatorname{lcm}(a, b)
$$

9. ($\mathbf{2} \mathbf{p t}$ each) Find the inverse of the following numbers
i) $2(\bmod 17)$
ii) $3(\bmod 18)$
10. $(\mathbf{2 p t})$ Solve the congruence $2 x-5=3(\bmod 17)$
11. $(\mathbf{3 p t})$ Show that $10!=-1(\bmod 11)$ without explicitly computing 10 !. (Hint: Pair the factors of 10 ! using the inverse of $a(\bmod 11)$ for $1 \leq a \leq 10$.)
12. $(\mathbf{2} \mathbf{p t})$ Find $5^{268}(\bmod 7)$ using modular exponentiation.
13. (2pt each) What is the smallest positive integer that can be written as a linear combination of (justify your answer)
i) 5 and 7
ii) 4 and 22
14. (4pt) What is the original message encrypted using the RSA system with $n=53 \cdot 61$ and $e=17$ if the encrypted message is 3185203824602550 ? (To decrypt, first verify that the decryption exponent is $d=2753=(17)^{-1}(\bmod 52 \cdot 60)$.)

Extra:3pt Prove using the Euclidean algorithm that $1=2(52 \cdot 60)-17 \cdot 367=-15(52 \cdot 60)+17 \cdot 2753$.
15. (2pt) Let $A=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{k}\end{array}\right)$ be an $k \times k$ diagonal matrix. Show that for any $n \in \mathbf{N}$,

$$
A^{n}=\left(\begin{array}{ccc}
a_{1}^{n} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & a_{k}^{n}
\end{array}\right)
$$

