MATH 363 Discrete Mathematics Assignment 7

Due by March 9th

1. (2pt) Let $\alpha=\frac{1+\sqrt{5}}{2}$. Recall that the first Fibonacci numbers are $f_{0}=0, f_{1}=1, f_{2}=1$. Use induction to prove that for any integer $n \geq 3, f_{n}$ satisfies

$$
f_{n}>\alpha^{n-2}
$$

2. (3pt each) Give the pseudocode of a recursive algorithm to:

- compute the greatest common divisor of two distinct positive integers a, b.
- give a factorization into prime factors of a positive integer n.

3. ($\mathbf{3 p t} \mathbf{t}$ Let z_{n} denote the number of zero-one strings of length n which do not contain two consecutive zeros. Find a recursive formula for z_{n} and justify this formula.
4. ($\mathbf{2 p t}$ each) Let the functions f, g satisfy the following recursive relation:

- $f(n)=9 f(n / 3)+20 n^{2}$ when $n=3 k$,
- $g(n)=16 g(n / 4)+n n=4 k$.

Give a big-O estimate for f and g.

