MATH 363 Discrete Mathematics Assignment 9

Due by March 23rd

1. Consider the following experiment. First, flip a coin. If the coin lands head, throw 1 die. If the coin lands tails, then throw two dice. Let the sample space be $S=\{h, t\} \times\{1,2, \ldots, 12\}$.
i) (1pt) Give the set $E \subset S$ that represent the event that the sum of the dice is at least 5 .
ii) (1pt) Give the set $F \subset S$ that represent the event that the sum of the dice is even.
iii) (2pt) If the coin and the dice are fair. What is the probability of F
$i v)(\mathbf{2 p t})$ If the coin is twice as likely to land heads than land tails. What is the probability of E
2. Monty Hall Three-Door contest You have a chance to win a large prize. First, you are asked to select one of three doors to open; the large prize is behind one of the three doors and the other two doors are losers. Once you select a door, the game show host (who knows what is behind each door) opens one of the other two doors that he knows is a losing door (selecting at random if both are losing doors). Then he asks you whether you would like to switch doors.
i) ($\mathbf{1 p t)}$ What is the probability that you selected the winning door, in the first place?
ii) ($\mathbf{2} \mathbf{p t}$) What is the probability that win the price if you switch doors?
3. A space probe near Neptune communicates with Earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time, independently of earlier transmittions. When a 0 is sent, the probability that it is received correctly is 0.9 , and the probability that it is received incorrectly (as a 1) is 0.1 . When a 1 is sent, the probability that it is received correctly is 0.8 , and the probability that it is received incorrectly (as a 0) is 0.2 .
i) $(\mathbf{1 p t})$ What is the probability that the probe sent a 1 and Earth received a 1 ?
ii) $(\mathbf{2 p t})$ What is the probability that Earth receives a 1.
iii) ($\mathbf{2} \mathbf{p} \mathbf{t})$ If Earth receives a 1, what is the probability that the probe sent 1 ?
$i v)(\mathbf{2 p t})$ If Earth receives the string 11, what is the probability that the probe actually sent the string 11?
4. Consider a bijection $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$; such functions are called permutations on [n]. If $\sigma(i)=i$ we say that i is a fixed point of σ. We will obtain the probability that a random permutation on $[n]$ has no fixed points.
i) (1pt) Let D be the event that σ has no fixed points, and F_{i} be the event that i is a fixed point in σ. Show that $\bar{D}=\cup_{i=1}^{n} F_{i}$.
ii) (2pt) Use the generalized inclusion-exclusion formula to show that

$$
1-P(D)=\sum_{i=1}^{n} P\left(F_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n} P\left(F_{i_{1}}, F_{i_{k}}\right)+\cdots \pm P\left(F_{1}, F_{2}, \ldots, F_{n}\right)
$$

iii) (2pt) Explain why, for $1 \leq k \leq n$ and $1 \leq i_{1}<\cdots<i_{k} \leq n$, then

$$
P\left(F_{i_{1}}, \ldots F_{i_{k}}\right)=\frac{(n-k)!}{n!}
$$

iv) ($\mathbf{1} \mathbf{p t)}$ Show that then

$$
P(D)=\sum_{i=0}^{n} \frac{(-1)^{i}}{i!} .
$$

Note that the limit of $P(D)$ is e^{-1} as $n \rightarrow \infty$.
5. (2pt) If a permutation σ on $[n]$ is chosen at random. What is the expected number of fixed points?
6. I have 10 undistinguishable balls, I take each of them and, independently of the others, paint it red,black or pink with probability $.3, .4$ and .3 respectively.
i) ($\mathbf{1} \mathbf{p t)}$ If X counts the number of red balls; what is the distribution of X ?
ii) ($\mathbf{1} \mathbf{p t}$) If Y counts the number of black and red balls; what is the distribution of Y ?
iii) (3pt) What is the probability that I have at least one ball of each color?
7. I collect stamps from the cereal boxes. Suppose there are 5 different stamps and that each box has a uniformly chosen stamp out of the 5 possible ones.

- (1pt) What is the probability that after opening 8 cereal boxes, I have at least 2 different stamps?
- (2pt) If I already have 3 different stamps. What is the expected number of boxed I will have to open before I found a stamp I don't have already?

8. Generalize the problem above. Suppose I want to collect n stamps, and each box has a uniformly chosen stamp out of the n possible ones.
i) ($\mathbf{2} \mathbf{p t}$) Given that I already have $i-1$ different stamps, let X_{i} be the number of boxes I have to open before I found a stamp I don't have already. What is the distribution of X_{i}
ii) $(\mathbf{1 p t})$ What is the expected value of X_{i} ?
iii) (2pt) What does the sum of $X_{1}+X_{2}+\cdots X_{n}$ represent?
