MATH 363 Discrete Mathematics SOLUTIONS: Assingment 1

1 Grading scheme

- 1. Full marks if IS/IS NOT A PROPOPOSITION is correct. Leave a note if the justification is incorrect.
- 2. Full marks if it is a proposition equivalent to those below. Leave a note if the language is ambiguous.
- 3. Full marks if answer is as below.-1pt if there are parenthesis missing (except in question 3.i))
- 2pt if stated TRUE.
 1pt if explained why it is TRUE.
- 5. 3pt if Truth tables are correct.
 1pt if it is stated that ARE/ARE NOT EQUIVALENT.
 -1pt for every pair of typos in each truth table.
- 6. Full marks if it is stated that IS /IS NOT TAUTOLOGY.
 Leave a note if there is no reference to which assignment of truth values make the proposition false.
 -1pt for every pair of typos in each truth table.

Extra points +2pt If the sequence of logical equivalences is correct.

- $+2\mathrm{pt}$ If it is stated which logical equivalence law was used at each step.
- -1pt If more than 2 of the stated logical equivalence law are incorrect/incomplete.

* Stating the use of Double negation law is not mandatory.

2 Assignment with solutions

1. (1pt each) Which of these are propositions? What are the truth values of those that are propositions?

- i) What time is it?Not a proposition: it does not state a fact
- *ii*) The moon is made of green cheese. A false proposition
- *iii*) $2^n \ge 100$. **Not a proposition**: The fact is neither true or false

Consider the following propositions

- p: I bought a lottery ticket this week.
- q: I won the million dollar jackpot on Friday.
- r: You get an A on the final exam.
- s : You do every exercise in the textbook.
- t: You get an A in this class.
- 2. (**2pt each**) Express each of these propositions as an English sentence.

i) $\neg p \land \neg q$

I didn't buy a lottery ticket this week and I didn't win the million dollar jackpot on Friday.

- $\begin{array}{l} ii) \ \neg p \lor (p \land q) \\ \text{Either I bought the lottery ticker and won the million dollar jackpot, or I didn't buy the lottery ticket. \end{array}$
- iii) $\neg(p \lor q)$ It is not the case that either: I bought the lottery ticket or I won the million dollar jackpot on Friday Also: same answer as in i)
- 3. (2pt each) Write these propositions using r, s, t and logical connectives.
 - i) You get an A on the final, you do every exercise in the textbook but you don't get an A in this class. $r \wedge s \wedge \neg t$
 - *ii*) Getting an A on the final and doing every exercise in the textbook is sufficient for getting an A in this class.

 $(r \wedge s) \rightarrow t$

- iii) You will get an A in this class if and only if you either do every exercise in the textbook or you get an A on the final. $t \leftrightarrow (r \lor s)$
- 4. (3pt each) Determine whether these biconditionals are true or false.
 - i) 2+2=4 if and only if 1+1=2**True**: both propositions are true.
 - (*ii*) 0 > 1 if and only if 2 > 3**True**: both propositions are false.
 - *iii*) 2 = 5 if and only if 8 3 = 4**True**: both propositions are false.
- 5. (4pt each) Determine whether the following compound propositions are logically equivalent.
 - i) $p \to \neg p$ and $(p \lor q) \to (p \land q)$ They are not logically equivalent. See Truth Table 1
 - *ii*) $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$ They are logically equivalent. See Truth Table 2
- 6. (4pt each) Determine whether the following compound propositions are tautologies.
 (+4pt if you use logical equivalences instead of truth tables)
 - i) $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ This is not a tautology. See Truth Table 3
 - *ii*) $[p \land (p \rightarrow q)] \rightarrow q$ This is a tautology. See Truth Table 4 **Alternative answers** using logical equivalences in next section

Tables

	p	q	$\neg p$	$p \vee q$	$p \wedge q$	$(p \lor q) \to (p \land q)$	$p \to \neg p$
	Т	Т	F	Т	Т	Т	F
1.	Т	F	F	Т	F	\mathbf{F}	\mathbf{F}
	\mathbf{F}	Т	Т	Т	F	\mathbf{F}	Т
	\mathbf{F}	\mathbf{F}	Т	F	F	Т	Т

	p	q	$p \rightarrow$	q	$q \rightarrow p$		$(p \to q) \land (q \to p)$)	$p \leftrightarrow$	q		
2.	Т	Т	Т		Т		Т				Т			
	Т	\mathbf{F}	F	F			F				\mathbf{F}			
	\mathbf{F}	Т	T	Т			\mathbf{F}				\mathbf{F}			
	\mathbf{F}	\mathbf{F}	Т		Т		Т			Т				
							,	,		-	,			
3.	p	q	$\neg p$	p	$p \rightarrow q$		$p \wedge (p$	$\neg q$ F	$\left[\neg p \land (p \to q) \right] -$			$[q)] \to \neg q$!	
	Т	Т	F		Т		F				Т			
	Т	F	F		F	F			Т		Т			
	\mathbf{F}	Т	Т		Т	Т			F		\mathbf{F}			
	\mathbf{F}	\mathbf{F}	Т		Т	Т			Т	Т				
								-						
4.	p	q	$p \rightarrow$	q	$p \land (p \to q)$			$[p \land (p \to q)] \to q$			$\rightarrow q$			
	Т	Т	T			Т		Т						
	Т	F	F			F		Т						
	\mathbf{F}	Т	T			F		Т						
	\mathbf{F}	\mathbf{F}	T			F		Т						

Extra Points

6. i) $(\neg p \land (p \to q)) \to \neg q \equiv p \lor \neg q$. The latter is not a tautology. Proof.

$$\begin{array}{l} (\neg p \land (p \rightarrow q)) \rightarrow \neg q \\ \equiv & [\neg p \land (\neg p \lor q)] \rightarrow \neg q \\ \equiv & \neg [\neg p \land (\neg p \lor q)] \lor \neg q \\ \equiv & [p \lor \neg (\neg p \lor q)] \lor \neg q \\ \equiv & [p \lor (p \land \neg q)] \lor \neg q \\ \equiv & (p \lor \neg q) \lor (p \land \neg q) \\ \equiv & [(p \lor \neg q) \lor p] \land [(p \lor \neg q) \lor \neg q] \\ \equiv & [(p \lor p) \lor \neg q] \land [p \lor (\neg q \lor \neg q)] \\ \equiv & [p \lor \neg q] \land [p \lor \neg q] \\ \equiv & p \lor \neg q \end{array}$$

by Implication law by Implication law by 1st De Morgan's law by 2nd De Morgan's law by Commut. + Assoc. laws by 1st Distributive law by Commut. + Assoc. laws by Idempotent law by Idempotent law

6. *ii*) $(p \land (p \rightarrow q)) \rightarrow q \equiv \mathbf{T}$; which is a tautology.

Proof 1.

$$[p \land (p \rightarrow q)] \rightarrow q$$

$$\equiv [p \land (\neg p \lor q)] \rightarrow q$$

$$\equiv [(p \land \neg p) \lor (p \land q)] \rightarrow q$$

$$\equiv [\mathbf{F} \lor (p \land q)] \rightarrow q$$

$$\equiv (p \land q) \rightarrow q$$

$$\equiv (p \land q) \lor q$$

$$\equiv (\neg p \lor \neg q) \lor q$$

$$\equiv (\neg p \lor \neg q) \lor q$$

$$\equiv \neg p \lor (\neg q \lor q)$$

$$\equiv \mathbf{T}$$

by Implication law by 2nd Distributive law by Negation law by Domination law by Implication law by 1st De Morgan law by Associative law by Negation law Proof 2.

	$[p \land (p \to q)] \to q$
≡	$\neg [p \land (p \to q)] \lor q$
≡	$[\neg p \vee \neg (p \to q)] \vee q$
≡	$[\neg p \lor q] \lor [\neg (p \to q) \lor q]$
≡	$[\neg p \lor q] \lor [\neg (\neg p \lor q) \lor q]$
≡	$[\neg p \lor q] \lor [(p \land \neg q) \lor q]$
≡	$[\neg p \lor q] \lor [(p \lor q) \land (\neg q \lor q)]$
≡	$[\neg p \lor q] \lor [(p \lor q) \land \mathbf{T}]$
≡	$[\neg p \lor q] \lor [p \lor q]$
≡	$[\neg p \lor p] \lor [q \lor q]$
≡	$\mathbf{T} \vee [q \vee q]$
≡	$\mathbf{T} \lor q$

 \equiv T

by Implication law by 1st De Morgan's law by Commut. + Assoc. laws by Implication law by 2nd De Morgan's law by 1st Distributive law by 1st Distributive law by Negation law by Commut. + Assoc. laws by Negation law by Idempotent law by Domination law