MATH 363 Discrete Mathematics
 Assignment 10

SOLUTIONS

1 Grading Scheme

1. i)-iv) Out of $\mathbf{2 p t}$ each: Full marks for an example.
-.5 pt for each representation which has a mistake.
2. Out of 2 pt each: Full marks if the correct relation is represented.
-.5 pt for each representation which has a mistake.
3. Out of $\mathbf{2 p t}$: 1 pt if it is proven that an antisymmetric relation has no 2 -cycles. 1 pt if it is proven that a relation with no 2-cycles is antisymmetric.
4. Out of $\mathbf{2 p t}: 2 / 3 \mathrm{pt}$ if it is proven that the relation is symmetric.
$2 / 3$ pt if it is proven that the relation is transitive.
$2 / 3 \mathrm{pt}$ if it is proven that the relation is reflexive.
5. Out of $\mathbf{3 p t}$: 1 pt if it is proven that the relation is symmetric.

1 pt if it is proven that the relation is transitive.
1 pt if it is proven that the relation is reflexive.
6. Out of $\mathbf{1 p t}$ each: Full marks for correct example.
7. Out of $\mathbf{3} \mathbf{p t}$ each: Full marks for a proof paraphrasing the ones below.

2 pt if there is an argument which is incomplete.
1 pt if there is only a particular example.
8. Out of $\mathbf{2 p t}: 1 \mathrm{pt}$ for a correct drawing of the graph.

1 pt for a correct partition of the vertex set.
9. Out of $\mathbf{3} \mathbf{p t}$: Full marks if weakly connected components are correct. -.5 pt for each strongly connected component which is not identified.
10. Out of $\mathbf{2 p t}$: Full marks if a paraphrase of the proof below is given.

1 pt if only an example is shown.
11. Out of $\mathbf{3 p t}$: 1 pt for the correct pseudocode.
.5pt for each step correct.

2 Assignment with solutions

1. (2pt each) Let $A=\{1, \ldots, 5\}$. Give an example of a relation on A which

- is transitive

$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)\}
$$

$$
M_{1}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- is transitive but not reflexive
$R_{2}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(3,5),(5,4)\}$

$$
M_{2}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- is reflexive but not symmetric
$R_{3}=\{(1,1),(2,2),(2,3),(3,2),(3,3),(3,5),(4,3),(4,4),(4,5),(5,4),(5,5)\}$

$$
M_{3}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

- is antisymmetric R_{4}
$R_{4}=\{(1,1),(1,2),(1,5),(2,5),(3,2),(3,5),(4,3),(4,4),(5,4),(5,5)\}$

$$
M_{4}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

List the elements, draw the digraph and matrix representing the relations. For example

$$
\begin{gathered}
R=\{(1,1),(3,2),(3,5),(4,3),(5,4),(5,5)\} \\
M_{R}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

2. (2pt each) Compute the compositions R^{2} and R^{3} of the relation R above, express them as a digraph and as a matrix.

$$
M_{R^{2}}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

$$
M_{R^{3}}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

3. $(\mathbf{2 p t})$ Prove that a relation is antisymmetric if and only if its digraph has no cycles of length 2 .

A cycle of length has the form $C=(x, y, x)$ where $x \neq y$. This means that $(x, y) \in R$ and $(y, x) \in R$ and $x \neq y$.
Thus, if a relation is antisymmetric, then there are no distinct elements x, y for which both (x, y) and $(y, x) \in R$; and therefore, there are no cycles of length 2 .
It remains to prove that if the digraph is not antisymmetric, then there is a cycle of length 2. Assume then that R is not antisymmetric. Then there are two distinct elements x, y such that (x, y) and (y, x) are both in R, thus, the path $C=(x, y, x)$ is a cycle of length 2 in the digraph. The proof is complete.
4. (2pt) Fix a positive integer m. For any $a, b \in \mathbb{Z}$, we say that a is related to b if: $a=b \bmod m$. Show that this defines an equivalence relation in \mathbb{Z} and give the classes of these.
Reflexive: since $a-a=0$ is divisible by any integer m. We have that $a=a \bmod m$.
Symmetric: If $a=b \bmod m$ then $a-b$ is a multiple of m, and so does $b-a$; thus $b=a \bmod m$
Transitive: If $a=b \bmod m$ and $b=c \bmod m$ then both $a-b$ and $b-c$ are multiples of m, and so does $(a-b)+(b-c)=(a-c) ;$ thus $a=c \bmod m$.
5. (3pt) Consider a graph $G=(V, E)$. For any $v, w \in V$, we say that v is related to w (write $v \sim w$) if $v=w$ or there is a path from v to w. Show that this defines an equivalence relation in V.
Reflexive: By definition of $v \sim w$
Symmetric: If $v=w$ then symmetry is trivial. Suppose $v \neq w$ and $v \sim w$ then there is a path $P=\left(x_{0}=\right.$ $\left.v, x_{1}, x_{2}, \ldots, x_{n}=w\right)$. Now, the path $Q=\left(x_{n}=w, x_{n-1}, \ldots, x_{1}, x_{0}=v\right)$ show that $w \sim v$
Transitive: If $v \sim w, w \sim u$ and all vertices are distinct then there are paths $P=\left(x_{0}=v, x_{1}, \ldots, x_{n}=w\right)$ and $Q=\left(y_{0}=w, y_{1}, \ldots, y_{m}=u\right)$. Therefore, there is a path from v to u : $S=\left(x_{0}, x_{1}, \ldots, x_{n}=\right.$ $\left.y_{0}, y_{1}, \ldots, y_{m}=u\right)$. Similar arguments apply for the case when some of the three vertices are equal.
6. (1pt each) Draw a graph $G(V, E)$ with $|V|=9$ and two vertices $v, w \in V$ in the same connected component; mark the following:

i) A simple path from v to w of length 5 , $P=(v, u, r, s, t, w)$
ii) A closed path going through v but which it is not a cycle, $P=(s, v, y, x, u, v, w, t, s)$
iii) A path from v to w which does not repeat edges but it does repeat vertices, $P=(v, u, r, s, v, w)$
iv) The vertices adjacent to v;
$N(v)=\{u, s, t, y)$
$v)$ What is the degree of w ?
$\operatorname{deg}(w)=2$
7. (3pt each) Consider a path $P=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)$ connecting u to v
$i)$ Show that if $u \neq v$, then there is a simple path from u to v.
If P is a simple path then we are done. So suppose that there are two indices $0 \leq i<j \leq n$ with $x_{i}=x_{j}$. Then we can form the path $P_{2}=\left(u=x_{0}, \ldots, x_{i}=x_{j}, x_{j+1}, \ldots, x_{n}=v\right)$ which still connects u to v (note that if $i=0$ then $j \neq n$ and if $j=n$ then $i \neq 0$) and has a strictly shorter length. If P_{2} is a simple path we are done. Otherwise, we repeat the process of finding shorter and shorter length. The process has to finish in at most n steps (you cannot reduce the length of a path with one edge), and we will have a simple path connecting u to v.
ii) Show that if $u=v$ and there are no repeated edges in the path, then there is a subpath

$$
Q=\left(x_{i}, x_{i+1}, \ldots, x_{k-1}, x_{k}\right)
$$

which is a cycle.
If P is a cycle we are done. Otherwise there are two indices $0 \leq i<j \leq n$ with $x_{i}=x_{j}$. Now consider the path $Q_{1}=\left(x_{i}, \ldots, x_{j}\right)$ this is a closed path; so either it is a cycle or we can repeat the process of finding two indices $i \leq k<l \leq j$ such that $x_{k}=x_{l}$ and consider the path $Q_{2}=\left(x_{k}, \ldots, x_{l}\right)$. This process ends, also, because we cannot reduce the length of a closed path beyond 2 .

Furthermore, since we are assuming that there are no edges repeated we will not have the case $Q=$ $\left(x_{i}, x_{i+1}, x_{i+2}=x_{i}\right)$ and instead we will end with a closed path $Q=\left(x_{i}, \ldots, x_{j}\right)$ where $j \geq i+3$ and no repeated vertices in the set $\left\{x_{i}, \ldots, x_{j}\right\}$.
8. (2pt) Draw the graph G with adjacency matrix M, and give the partition of its vertices into connected components.

$$
M=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

$V=\{1,3,6\} \cup\{2\} \cup\{4,5\}$
9. (3pt) Describe the strongly connected components and weakly connected components of R^{3} in exercise 2. above.
Weakly connected components: $\{1\}$ and $\{2,3,4,5\}$
Strongly connected components: $\{1\}$ and $\{3,4,5\}$
10. (2pt) Use the handshaking theorem to show that any (undirected) graph has an even number of vertices of odd degree.
Suppose to the contrary that there is a graph with an odd number of vertices with odd degree. Let $V_{1}=\{v \in V: \operatorname{deg}(v)=1 \bmod 2\}$ be the set of vertices with odd degree. Then,

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V_{1}} \operatorname{deg}(v)+\sum_{v \in V \backslash V_{1}} \operatorname{deg}(v)
$$

is a sum where the first term is odd and the second is even. This is a contradiction to the handshaking theorem, because the sum above is equal to $2|E|$, which is even. Thus, all graphs have an even number of vertices with odd degree.
11. (Extra: 3pt) Give the pseudocode and apply Warshall's algorithm to the relation R above and give the digraph representing the resulting relation.
The algorithm is given by:
procedure Warshall ($M_{R}: n \times n$ zeroone matrix)
$W:=M_{R}$
for $k:=1$ to n
for $i:=1$ to n
for $j:=1$ to n
$w_{i j}:=w_{i j} \vee\left(w_{i k} \wedge w_{k j}\right)$
return W

The matrix after the i-th iteration is W_{i} :

$$
W_{0}=M_{R}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Vertex 1 has only a loop, so it can only connect 1 to 1 which is the same loop;

$$
W_{1}=M_{R}
$$

There are no edges going out of 2 ;

$$
W_{2}=M_{R}
$$

Vertex 3 can connect 4 to 2 and 4 to 5

$$
W_{3}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Vertex 4 can connect 5 to 2,5 to 3 and 5 to 5 (the latter is a loop that already existed in the matrix);

$$
W_{4}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Vertex 5 can connect 3 to 3,3 to 4,4 to 4 and 5 to 5 (the latter is a loop that already existed in the matrix);

$$
W_{5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

The digraph corresponding to $W_{5}=R^{*}$ is below

