MATH 363 Discrete Mathematics Solutions: Assignment 4

1 Grading Scheme

1. Full marks if Diagram is correct.
2. Full marks if Bit string is correct.
3. There are several ways to prove it: For each question, full marks if answered.

- Using Venn Diagrams. -.5pt if, besides the diagrams, there are no explanatory notes.
- Using Membership Table. -.5pt if besides the table, there are no explanatory notes.
- As shown below.

4. $\mathbf{+ 1 p t}$ For each item answered. And Full marks if:
i) Power set contains 16 elements.

Leave a note if there are some parenthesis misplaced within the elements.
ii) Stated: One cannot conclude anything.
iii) Stated: The empty set is an element of C.
5. i) +3 pt if they exhibit an element in $A \times B$ which is not contained in $B \times A$ (or viceversa). Similar as the solution below.
+2 pt if they only exhibit a particular example of distinct A and B where $A \times B \neq B \times A$. (e.g. $A=\{a, b\}, B=\{c, d\})$
Leave a note if they use matrix square brackets instead of (curly) brackets to place elements of the cartesian product.
No marks if they performed product of vectors.
$i i)+\mathbf{2 p t}$ if bijection is $f(a, b)=(b, a)$.
$+\mathbf{1 p t}$ if there is a justification why this is a bijection.
6. Full marks if answer paraphrases solution below. Otherwise,
$+\mathbf{2 p t}$ if it justified the equality.
$+\mathbf{1 p t}$ if it considered only a particular case.
7. Full marks (each) if answers are correct.
$+\mathbf{1 p t}$ (each) if answered is wrong but some work is shown.
8. Full marks if it considers a general value $x \in \mathbf{Z}$ and $x \notin \mathbf{Z}$.
+1 pt if it considers only a particular value x for integers and non-integers.
9. Full marks if it explains how to find a injective function.
10. Full marks if it states a bijection is what we are looking for, and gives one.
-1pt if function provided is not a bijection.
11. Full marks if answered yes.
12. $\mathbf{+ 1} \mathbf{p t}$ for each correct answer (as shown below)
$-.5 p t$ if a negative answered is not justified.
Leave a note if the range is not expressed as a set.
13. Full marks if development of sum is displayed and correct.
$\mathbf{- 1} \mathbf{p t}$ If there is a formula applied and there is no justification.
14. Full marks if development of sum is displayed and correct,
$\mathbf{- 1 p t}$ If there is a wrong computation.
$\mathbf{- 1} \mathbf{p t}$ If there is a wrong interpretation of the indices.
15. $\mathbf{+ 1} \mathbf{p t}$ If example grows exponentially,
$+\mathbf{1} \mathbf{p t}$ If it is justified why the example is not injective.
16. Full marks if answered correctly
17. Full marks if answered correctly
18. $+\mathbf{1 . 5 p t}$ If pair of witnesses C, k are good,
$+.5 p t$ If explained how the inequality is satisfied with such witnesses.
19. $\mathbf{+ 2} \mathbf{p t}$ If a correct algorithm is described.
$+\mathbf{1 p t}$ If pseudocode is presented.
20. $\mathbf{+ 2} \mathbf{p t}$ If a correct bound using Big-O notation is stated,
$+\mathbf{1} \mathbf{p t}$ If such bound is explained.
21. $\mathbf{+ 2 p t}$ If a correct bound using Big-O notation is stated,
$+\mathbf{1 p t}$ If such bound is explained.

2 Assignment with solutions

1. (1pt each) Draw the Venn Diagram of the following sets.
i) $[(A \cup B) \backslash C] \cup(A \cap C)$

ii) $\left(A^{c} \cup B\right) \cap C$

2. (1pt each) Let $U=\left\{x \in Z: x^{2}<10\right\}$, represent the follows sets using bit strings. Use the increasing order to list the elements in $U . U=\{-3,-2,-1,0,1,2,3\}$
i) $A=\{3,-2,0,1,-3\}$
iv) $(A \cap C)$
0001100
ii) $B=\{x \in U, x>0\}$
v) $(A \cup B)$
0000111
1101111
iii) $C=\{x \in U,|x-1|<2\}$
vi) $[(A \cup B) \backslash C] \cup(A \cap C)$ 0001110
1101101
3. (2pt each) Let A, B be sets. Show that
i) $(A \cap B) \subseteq(A \cup B)$

If $x \in A \cap B$ then $x \in A$ and $x \in B$. In particular, $x \in A$. Thus, $x \in(A \cup B)$.
ii) $A \cup B=A \cup(B \backslash A)$

First we will show that $A \cup B \subseteq A \cup(B \backslash A)$. Let $x \in A \cup B$, then $x \in A$ or $x \in B$. Now, we will prove that $x \in A \cup(B \backslash A)$ by considering two cases:
Case 1: $x \in A$. Thus, $x \in A \cup(B \backslash A)$.
Case 2: $x \notin A$. Then it must be the case that $x \in B$. Since $x \in B$ and $x \notin A$, we have $x \in B \backslash A$. Therefore $x \in A \cup(B \backslash A)$.
Second, we will show that $A \cup(B \backslash A) \subseteq A \cup B$. Let $x \in A \cup(B \backslash A)$, then $x \in A$ or $x \in B \backslash A$. Now, we will prove that $x \in A \cup B$ by considering two cases:
Case 1: $x \in A$. Thus, $x \in A \cup B$.
Case 2: $x \in(B \backslash A)$. In particular, this means $x \in B$ and thus $x \in(A \cup B)$.
4. (2pt each) Let $A=\{\emptyset, a, b,\{a,\{b\}\}\}$
i) List all the elements of $B=\mathcal{P}(A)$
$B=\{\emptyset,\{a\},\{b\},\{\{a,\{b\}\}\},\{a, b\},\{a,\{a,\{b\}\}\},\{b,\{a,\{b\}\}\},\{a, b,\{a,\{b\}\}\}$
$\{\emptyset\},\{\emptyset, a\},\{\emptyset, b\},\{\emptyset,\{a,\{b\}\}\},\{\emptyset, a, b\},\{\emptyset, a,\{a,\{b\}\}\},\{\emptyset, b,\{a,\{b\}\}\},\{\emptyset, a, b,\{a,\{b\}\}\}\}$
ii) If $\{\emptyset\} \subset \mathcal{P}(C)$, what can you conclude about C ? Justify your answer. One cannot conclude anything; this is a fact that occurs for all sets C. Recall that $\emptyset \subset C$, for any set C. Therefore, $\emptyset \in \mathcal{P}(C)$ and so $\{\emptyset\} \subset \mathcal{P}(C)$.
iii) If $\{\emptyset\} \in \mathcal{P}(C)$, what can you conclude about C ? Justify your answer.

If there is a singleton S in $\mathcal{P}(C)$ then the element contained in S is an element of C. Thus, we can conclude that $\emptyset \in C$ (the empty set is an element of C).
5. (3pt each) Let A and B be distinct non-empty sets
i) Show that $A \times B \neq B \times A$,

If $A \neq B$, let's suppose without loss of generality that there exists an element $b \in B$ such that $b \notin A$. Since A is non-empty, there exists at least one element $a \in A$.
Now, the ordered pair $(a, b) \in A \times B$ but our choice of b implies that $(a, b) \notin B \times A$. We have shown that there is at least one element in $A \times B$ which is not contained in $B \times A$, so $A \times B \neq B \times A$.
ii) Give a bijection between $A \times B$ and $B \times A$.

Let $f:(A \times B) \rightarrow(B \times A)$ be defined as $f(a, b)=(b, a)$.
Note that f is well define beacause if $(a, b) \in A \times B$ that means that $a \in A$ and $b \in B$ and then, clearly, $(b, a) \in B \times A$.
First we show that f is surjective: Consider a pair $(x, y) \in B \times A$; with a similar argument as above, we have that $(y, x) \in A \times B$, and furthermore $f(y, x)=(x, y)$; as desired.
Second we show that f is injective: We have to prove that for any two distinct elements $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in$ $A \times B$ we have $f\left(a_{1}, b_{1}\right) \neq f\left(a_{2}, b_{2}\right)$. This is proven directly: the assumption is that $a_{i} \neq b_{i}$ for $i=1$ or $i=2$. W.l.o.g, let us assume that $a_{1} \neq b_{1}$. Then the second coordinates of $f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right)$ are distinct, which is what we wanted to prove.
Since f is both injective and surjective, then f is a bijection from $A \times B$ to $B \times A$
6. (3pt) Show that if $A \cap C=B \cap C$ and $A \cup C=B \cup C$, then $A=B$

We will show that under the conditions above, $A \subseteq B$ and $B \subseteq A$:
First, consider $x \in A$, we will analyse two cases.
Case 1: If $x \in C$, then $x \in A \cap C$, by the hypothesis $A \cap C=B \cap C$, we have that $x \in B \cap C$ and in particular $x \in B$.
Case 2: If $x \notin C$. Since we started with $x \in A$ we have $x \in A \cup C$, by the hypothesis $A \cup C=B \cup C$, we have that either $x \in B$ or $x \in C$. The latter can not occur (this is Case 2), so it must be the case that $x \in B$.
In either case, we showed that $x \in A$ implies $x \in B$. Thus, $A \subseteq B$. The proof that $B \subseteq A$ is the same as above, by interchanging the roles of A and B.
7. (2pt each) Let $A_{i}=\{1,2, \ldots, i\}$. Give a description of the following sets.
i) $A_{2 i} \backslash A_{2 i-1}$
$=\{2 i\}$
iii) $\begin{aligned} & \bigcap_{j=3 i-1}^{3 i+1} A_{j} \\ = & A_{3 i-1}\end{aligned}$
ii) $\bigcap_{i=1}^{40}\left(A_{2 i} \backslash A_{2 i-1}\right)$
iv) $\bigcup_{i=2}^{4}\left(\bigcap_{j=3 i-1}^{3 i+1} A_{j}\right)$
$=\emptyset$

$$
=A_{11}
$$

8. (2pt) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\lceil x\rceil-\lfloor x\rfloor$. Show that $f(x)=0$ if $x \in \mathbf{Z}$ and $f(x)=1$ if $x \notin \mathbf{Z}$. It is clear that if x is an integer, then $\lceil x\rceil=\lfloor x\rfloor=x$. Thus $f(x)=0$.
Now, consider a non-integer real number x; we can write it as $x=k+\varepsilon$ where $k \in \mathbf{Z}$ and $\varepsilon \in(0,1)$. In this case, $\lfloor x\rfloor=k$ and $\lceil x\rceil=k+1$. Thus, $f(x)=(k+1)-k=1$.
9. (2pt) Prove that for any non-empty countable set S, there exists a injective function from S to \mathbf{N}.

There are two types of countable sets: finite, or infinite. By the definition used in class, S is countable and infinite when there exists a bijective function $f: S \rightarrow \mathbf{N}$. In particular, this function f is injective.
Now, if S is finite, there exists a bijective function $f: S \rightarrow\{1, \ldots, n\}$, for some $n \in \mathbf{N}$. Let $g: S \rightarrow \mathbf{N}$ be defined as $g(s)=f(s)$ for all $s \in S$. Then it follows that g is injective; otherwise there are two distinct elements $s, t \in S$ such that $g(s)=g(t)$. This would lead to $f(s)=f(t)$ which is a contradiction because f is a bijection.
10. (3pt) Show that the set of points in the circle $C=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=1\right\}$ have the same cardinality that the points in the interval $I=[0,1)$.
It suffices to give a bijection between I and C; for example
$f: I \rightarrow C$, with $f(x)=(\cos (2 x \pi), \sin (2 x \pi))$
$g: C \rightarrow I$, with $f(x, y)=\frac{\arctan (x / y)}{2 \pi}$
11. (1pt) Let P be the set containing the 5 pythagorean solids. Is P countable?

Yes. (The set is $P=\{$ tetrahedron, cube, octahedron, dodecahedron, icosahedron $\}$)
12. (2pt each) Let $f, g, h: P \rightarrow \mathbf{N}$ be functions such that, if $p \in P$ then

$$
\begin{array}{ll}
f(p)=n & \text { if } p \text { has } n \text { faces } \\
g(p)=m & \text { if } p \text { has } m \text { edges } \\
h(p)=v & \text { if } p \text { has } v \text { vertices }
\end{array}
$$

For example, $f($ cube $)=6, g($ cube $)=12, h($ cube $)=8 .($ Justify your answers $)$
i) Are the functions f and g injective?
f is injective: f (tetrah. $)=4, f($ cube $)=6, f($ octah. $)=8, f$ (dodecah. $)=12, f($ icosah. $)=20$
g is not injective: g (cube $)=g($ octah. $)=12$ and $g($ dodecah. $)=g$ (icosah. $)=30$
ii) Are the functions f and g surjective?

Both are not surjective since there is no preimagen for $10 \in \mathbf{N}$, for example.
iii) What is the range of g and $f+h$?
$g(P)=\{6,12,30\}$ and $(f+h)(P)=\{8,14,32\}$
13. (2pt each) Find the value of the following sums. Show your work.
i) $\sum_{i=1}^{40}(3+5 i)$
ii) $\sum_{i=0}^{10}(1 / 3)^{i}=\frac{1-(1 / 3)^{11}}{(1-1 / 3)}$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{40} 3\right)+5 \sum_{i=1}^{40} i \\
& =(3 \cdot 40)+5 \frac{(40)(41)}{2} \\
& =120+4100=4220
\end{aligned}
$$

or working out the formula

$$
\begin{aligned}
& =\frac{(1-1 / 3) \sum_{i=0}^{10}(1 / 3)^{i}}{(1-1 / 3)} \\
& =\frac{\left(\sum_{i=0}^{10}(1 / 3)^{i}\right)-\left(\sum_{i=1}^{11}(1 / 3)^{i}\right)}{\frac{2}{3}} \\
& =\frac{1-\frac{1}{3^{11}}}{\frac{2}{3}}=\frac{3^{11}-1}{2 \cdot 3^{10}}
\end{aligned}
$$

14. (3pt each) Find the value of the following sums. Show your work.
i) $\sum_{i=2}^{4} \sum_{j=1}^{2 i-3} 2 j$
ii) $\sum_{i=2}^{4} \sum_{j=1}^{i}\lfloor 3 j / 2\rfloor$
$=\sum_{i=2}^{4} 2\left(\sum_{j=1}^{2 i-3} j\right)$
$=\sum_{j=1}^{2}\lfloor 3 j / 2\rfloor+\sum_{j=1}^{3}\lfloor 3 j / 2\rfloor+\sum_{j=1}^{4}\lfloor 3 j / 2\rfloor$
$=\sum_{i=2}^{4} 2\left(\frac{(2 i-3)(2 i-2)}{2}\right)$
$=3(\lfloor 3 \cdot 1 / 2\rfloor+\lfloor 3 \cdot 2 / 2\rfloor)$
$+2(\lfloor 3 \cdot 3 / 2\rfloor)+(\lfloor 3 \cdot 4 / 2\rfloor)$
$=\sum_{i=2}^{4}(2 i-3)(2 i-2)$
$=(1 \cdot 2)+(3 \cdot 4)+(5 \cdot 6)=44$
15. (2pt) Give an example of a function from $\mathbf{N} \rightarrow \mathbf{N}$ which is not injective and it grows at least exponentially. Justify your answer.

Let $f(n)=(\lceil(n+1) / 2\rceil)^{\lceil(n+1) / 2\rceil}$. To see that f is not injective, note that $f(2)=f(3)$. This follows since $f(2)=(\lceil 3 / 2\rceil)^{\lceil 3 / 2\rceil}=2^{2}$ and $f(3)=(\lceil 4 / 2\rceil)^{\lceil 4 / 2\rceil}=2^{2}$.
That f grows at least exponential is the same as showing that f is $\Omega\left(e^{n}\right)$.
This in turn means that for some positive constants c, a, K we have $|f(n)| \geq c \cdot a^{n}$ for $n \geq K$.
Note that $\lceil(n+1) / 2\rceil \geq n / 2 \geq 4$ for all $n \geq 8$. Thus, for all $n \geq 8$
$|f(n)|=f(n) \geq\left(\frac{n}{2}\right)^{n / 2} \geq(\sqrt{n / 2})^{n} \geq 2^{n}$.
16. (1pt each) Determine whether the following statements are true.
i) $2+x^{3}$ is $O\left(x^{2}\right)$ False
ii) $2+x^{3}$ is $\Omega\left(x^{2}\right)$ True
iii) $\lfloor 2 x\rfloor$ is $O(x)$ True
17. (1pt each) Give a big-O estimate for the following functions
i) $\left(n^{3}+n^{2} \log n\right)(3-2 \log n)$ is $O\left(n^{4}\right)$ and is also $O\left(n^{3} \log n\right)$
ii) $\left(n!-n^{5}\right)\left(3^{n}+5^{n}\right)$ is $O\left(n!\cdot 5^{n}\right)$ and is also $O\left((5 n)^{n}\right)$, the latter uses Stirling formula
18. (2pt each) Use the definition of ' $f(x)$ is $O(g(x)), \Omega(g(x)), \Theta(g(x))^{\prime}$ to show that
i) $n^{3} \log \left(n^{2}\right)$ is $\Omega\left(n^{3}\right)$,

By definition this means that there are positive constants c, K such that

$$
\left|n^{3} \log \left(n^{2}\right)\right| \geq c n^{3} \text { for all } n \geq K
$$

That is true if we set $c=1$ and $K=2$. This follows since $\log \left(n^{2}\right) \geq 1$ if $n \geq 2$.
ii) $\log \left(3^{n}\right)$ is $O(n)$,

By definition this means that there are positive constants c, K such that

$$
\left|\log \left(3^{n}\right)\right| \leq c n \text { for all } n \geq K
$$

That is true if we set $c=\log 3$ and $K=1$. This follows since $\log \left(3^{n}\right)=n \log 3$.
iii) $n^{3}+5 n^{2}+40$ is $\Theta\left(n^{3}\right)$.

By definition this means that there are positive constants c_{1}, c_{2} and K such that

$$
c_{1} n^{3} \leq\left|n^{3}+5 n^{2}+40\right| \leq c_{2} n^{3} \text { for all } n \geq K
$$

That is true if we set $c_{1}=1, c_{2}=7$ and $K=4$.
Consider first the upper bound. For all $n \geq 4$ we have $n^{3} \geq 64$, thus

$$
\left|n^{3}+5 n^{2}+40\right|=n^{3}+5 n^{2}+40 \leq 6 n^{3}+40 \leq 7 n^{3}
$$

The lower bound is straightforward, for n positive: $\left|n^{3}+5 n^{2}+40\right|=n^{3}+5 n^{2}+40>n^{3}$.
19. (2pt) Describe an algorithm for finding both the largest and the smallest integers in a finite sequence of integers.
20. (3pt) Determine the worst-case performance of the algorithm above.
21. (3pt) Determine the least number of comparisons, or best-case performance required to find the maximum of a sequence of n integers (using the algorithm from class).

