MATH 363 Discrete Mathematics Solutions: Assignment 5

1 Grading Scheme

1. Out of $\mathbf{2 p t}:+1$ pt If true or false is well decided.
+1 pt If a proof or counterexample is given.
2. Out of $\mathbf{2 p t}:+1$ pt If true or false is well decided.
+1 pt If a proof or counterexample is given.
3. Out of $2 \mathbf{p t}$: Full marks if message is correct.
4. Out of $\mathbf{3 p t}:+2$ pt If the answer is $\min \left\{b_{1}, b_{2}\right\}$, for some values as below.
.5 pt for each justification of why $a=b_{i}(\bmod m)$.
5. Out of $\mathbf{2 p t}:+1$ pt If answer 6 random numbers is given.
+1 pt if there is some justification given.
6. Out of $\mathbf{3 p t}$: The proof can be broken in 3 parts.

1 pt for each part in the answer that paraphrases the solution below.
7. Out of $\mathbf{1 p t}$ each: Full marks if answer is correct.
8. Out of $\mathbf{3 p t}$: The proof can be broken in 3 parts.

1 pt for each part in the answer that paraphrases the solution below.
9. Out of $2 \mathrm{pt}: 1 \mathrm{pt}$ If the answer is correct.
+1 pt If some justification is given.
10. Out of $\mathbf{2 p t}$: Full marks if answer paraphrases the one below.
-1 pt If they do not state which is the inverse of 2^{-1}.
11. Out of 3pt: Full marks if answer paraphrases the one below.
-1 pt If they do not state which integers are inverse of which.
12. Out of $\mathbf{2 p t}$: 1 pt If the answer is correct.
+1 pt If the procedure of modular exponentiation is displayed. $\left(\right.$ Possible shorcuts $2^{3}=1(\bmod 7)$ or $5^{3}=$ $-1(\bmod 7)$.)
13. Out of $\mathbf{2 p t}:+1$ if answer is correct.
+1 pt is some justification is given (an explicit linear combination, mention to a theorem of class).
14. Out of 4 pt: +1 pt If decryption gives the string 1816200817170411 translated to SQUIRREL.
+1 pt If the decryption function is displayed.
+1 pt If it is explained that encrypted string has to be broken into 4 blocks.
+1 pt If there is a verifycation or argument why 2753 is the inverse of 17 modulo 3120 .
Extra If the Euclidean algorithm is used to find the value 2753.
15. Out of $2 \mathbf{p t}:+1 \mathrm{pt}$ If the basis step is stated and correct.
+1 pt If the inductive step is stated and correct.

2 Assignment with solutions

1. (2pt)Prove or disprove that if $a \mid c$ and $b \mid d$, then $a b \mid c d$.

It is true. The two assumptions of divisibility imply that there are integers k, l such that $c=k a$ and $d=l b$. It follows that $c d=(k l) \cdot a b$ or in other words, $a b$ is a factor of $c d$.
2. (2pt) Prove or disprove that $a \mid b c$ implies that either $a \mid b$ or $a \mid c$.

It is false. A counterexample is: $a=2 \cdot 3=6, b=10=2 \cdot 5$ and $c=9=3^{2}$. This is an instance where $a \mid b c$ since $b c=90=6 \cdot 15$ but $a=6$ is neither a factor of 10 nor 9 .
3. (2pt) Decode the following message encripted with Caesar's cipher: Darorwv olyh lq Arfklplofr. The message is: Axolots live in Xochimilco
4. (3pt) Let $a, m \in \mathbf{Z}$ and $m>0$. Find a formula for the integer with smallest absolute value that is congruent to $a(\bmod m)$.
Use the division algorithm to express $a=k m+b$ with $0 \leq b<m$. Let s denote the integer with smallest absolute value that is congruent to $a(\bmod m)$.
Then $|s|=\min \{b, m-b\}, s=b-m\lfloor 2 b / m\rfloor$; or equivalently $s=\min \{x-\lfloor x / m\rfloor m,\lceil x / m\rceil m-x\}$.
Justification of these formulas:

- From the division algorithm and definitions of modular arithmetic we have that b and $b-m$ are two integers congruent to a modulo m. And thus, the absolute value of s is the minimum of $|b|=b$ and $|b-m|=m-b$
- If $2 b<m$, then $s=b$ and $\lfloor 2 b / m\rfloor=0$. If $2 b>m$, then $m-b<b$ and so $s=b-m$; note that in this case $\lfloor 2 b / m\rfloor=1$. Finally, if $2 b=m$ then m is even and $m-b=b$. With this, we conclude that in any of the three cases, the formula $s=b-m\lfloor 2 b / m\rfloor$ gives the right answer.
- If $b=0$, then $\lfloor x / m\rfloor=k=\lceil x / m\rceil$ and $s=0$. If $b \neq 0$, then $\lfloor x / m\rfloor=k$ and $\lceil x / m\rceil=k+1$. It follows that $b=x-\lfloor x / m\rfloor m$ and $b-m=\lceil x / m\rceil m-x$; which are the two possible values of s.

5. ($\mathbf{2 p t})$ Consider the linear congruence generated by $x_{n+1}=2 x_{n}(\bmod 18)$ with seed $x_{0}=17$. How many pseudorandom numbers can we generate before numbers start repeating?
Applying the recurrence function we find:
$x_{1}=2 \cdot 17(\bmod 18)=16$,
$x_{2}=2 \cdot 16(\bmod 18)=14$,
$x_{3}=2 \cdot 14(\bmod 18)=10$,
$x_{4}=2 \cdot 10(\bmod 18)=2$,
$x_{5}=2 \cdot 2(\bmod 18)=4$,
$x_{6}=2 \cdot 4(\bmod 18)=8$,
$x_{7}=2 \cdot 8(\bmod 18)=16$.
Thus, we can generate 6 random numbers before they start repeating themselves.
6. (3pt) Prove that there are infinitely many prime numbers.

This proof can be divided in three parts.
First part. Let S be the set that contains all prime numbers. The proof is by contradiction: Assume that S is finite. Then the prime numbers can be listed $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$.
Second part. Let $m=1+p_{1} \cdot p_{2} \cdots p_{k}$. Claim. There is a number $q \notin S$ which divides m and q is prime. If the claim is true, it leads to a contradiction because all prime numbers are assumed to be contained in S. Third part. Proof of claim above.
Case 1: m is prime (then $m=q$). Consider $p_{i} \in S$, we have that $m \geq p_{1} \cdots p_{k} \geq p_{i}$; this implies that $m \neq p_{i}$. Since this holds for all $p_{i} \in S$ we conclude that $q \neq S$.
Case 2: m is not prime. Then there is a prime number q that divides m. Again consider $p_{i} \in S$, suppose that $q=p_{i}$ since q divides m and q divides $P=p_{1} p_{2} \cdots p_{k}$ then q divides $m-P=1$. This is a contradiction, there is no prime number that divides 1 . Thus we conlude that $q \neq p_{i}$. Since this holds for all $p_{i} \in S$ we have that $q \neq S$. Completing the proof of the claim in the second part.
7. (1pt each) Find the following values and express them as product of prime numbers
i) $\operatorname{gcd}(18,99) \operatorname{gcd}\left(2 \cdot 3^{2}, 3^{2} \cdot 11\right)=3^{2}$
ii) $\operatorname{lcm}(18,99) \operatorname{lcm}\left(2 \cdot 3^{2}, 3^{2} \cdot 11\right)=2 \cdot 3^{2} \cdot 11$
iii) $\operatorname{gcd}\left(2^{3} \cdot 3 \cdot 5^{2}, 2 \cdot 7 \cdot 5^{4}\right)=2 \cdot 5^{2}$
iv) $\operatorname{lcm}\left(2^{3} \cdot 3 \cdot 5^{2}, 2 \cdot 7 \cdot 5^{4}\right)=2^{3} \cdot 3 \cdot 5^{4} \cdot 7$
8. $(\mathbf{3 p t})$ Prove or disprove that for any positive integers a, b,

$$
a \cdot b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

This proof has three main steps: First, let $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and $a=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$.
Second. With this notation, the greatest common divisor are least common multiple of a and b can be written as
$\operatorname{gcd}(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{k}^{\min \left\{\alpha_{k}, \beta_{k}\right\}}$,
$\operatorname{lcm}(a, b)=p_{1}^{\max \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\max \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{k}^{\max \left\{\alpha_{k}, \beta_{k}\right\}}$.
Third. The result follows by noting that, for any real numbers x, y we have that $x y=\min \{x, y\} \max \{x, y\}$. This is proven by cases (If $x=y$ the minimum equals the maximum. Otherwise, if (w.l.o.g.) $\min \{x, y\}=x$ then $\max \{x, y\}=y)$.
9. (2pt each) Find the inverse of the following numbers
i) $2(\bmod 17) 2^{-1}=9(\bmod 17)$, since $2 \cdot 9=18=1(\bmod 17)$
ii) $3(\boldsymbol{\operatorname { m o d }} 18) 3^{-1}(\boldsymbol{\operatorname { m o d }} 18)$, does not exist since $\operatorname{gcd}(3,18)>1$.
10. $(\mathbf{2 p t})$ Solve the congruence $2 x-5=3(\bmod 17)$

From the above exercise we have that $2^{-1}=9(\bmod 17)$, thus The congruence is equivalent to

$$
2^{-1}(2 x)=(3+5) 9(\bmod 17)
$$

simplifying we get $x=4(\bmod 17)$.
11. $(\mathbf{3 p t})$ Show that $10!=-1(\bmod 11)$ without explicitly computing 10 !. (Hint: Pair the factors of 10 ! using the inverse of $a(\bmod 11)$ for $1 \leq a \leq 10$.)
By inspection, we can verify that the pairs $(2,6),(3,4),(5,9),(7,8)$ are numbers which are inverse of the other modulo 11. Also, the numbers 1 and 10 are inverse of themselves. Thus

$$
10!=1 \cdot(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) \cdot 10=10=-1(\bmod 11)
$$

12. (2pt) Find $5^{268}(\bmod 7)$ using modular exponentiation.

$$
\begin{aligned}
5^{268} & =(25)^{134}(\bmod 7) \\
& =(3)^{134}(\bmod 7) \\
& =(9)^{67}(\bmod 7) \\
& =2(2)^{66}(\bmod 7) \\
& =2(4)^{33}(\bmod 7) \\
& =2 \cdot 4(4)^{32}(\bmod 7) \\
& =1 \cdot 16^{16}(\bmod 7) \\
& =2^{16}(\bmod 7) \\
& =4^{8}(\bmod 7) \\
& =16^{4}(\bmod 7) \\
& =2^{4}(\bmod 7) \\
& =4^{2}(\bmod 7) \\
& =16(\bmod 7) \\
& =2(\bmod 7) .
\end{aligned}
$$

We can also note that $2^{3}=1(\bmod 7)$. In which case we have:

$$
\begin{aligned}
5^{268} & =(25)^{134}(\bmod 7) \\
& =(3)^{134}(\bmod 7) \\
& =(9)^{67}(\bmod 7) \\
& =2(2)^{66}(\bmod 7) \\
& =2(8)^{22}(\bmod 7) \\
& =2(1)^{22}(\bmod 7) \\
& =2(\bmod 7) .
\end{aligned}
$$

We can also note that $5^{3}=(-2)^{3}=-1(\bmod 7)$. In which case we have:

$$
\begin{aligned}
5^{268} & =5(5)^{3 \cdot 89}(\bmod 7) \\
& =5(-1)^{89}(\bmod 7) \\
& =-5=2(\bmod 7)
\end{aligned}
$$

13. (2pt each) What is the smallest positive integer that can be written as a linear combination of (justify your answer)
i) 5 and 7

1 is the smallest: $\operatorname{gcd}(5,7)=1=3 \cdot 5-2 \cdot 7$
ii) 4 and 22

2 is the smallest: $\operatorname{gcd}(4,22)=2=-5 \cdot 4+1 \cdot 22$
In this case, 2 is the smallest integer because every linear combination of even numbers is even, so we cannot express 1 as an linear combination of 4 and 22 .
14. (4pt) What is the original message encrypted using the RSA system with $n=53 \cdot 61$ and $e=17$ if the encrypted message is 3185203824602550 ? (To decrypt, first verify that the decryption exponent is $d=2753=(17)^{-1}(\bmod 52 \cdot 60)$. $)$
This exercise is comprised of 4 steps

First, $n=53 \cdot 61=3233$ the largest block of letters we can encode is 2 represented with 4 digits. Therefore, the message was encrypted in 4 blocks: 3185, 2038, 2460, 2550
Second, given the key $(3233,17)$ we need to find the inverse of 17 modulo $3120=52 \cdot 60$, since the number 2753 is proposed, we just need to verify it is, in fact the inverse: $1=2753 \cdot 17+(-15) 3120$, so that $2753 \cdot 17=1(\bmod 3120)$.
Third, with the information above we now have the decoding key $(3233,2753)$ and the four blocks of ciphertext we will apply the decryption function $D(x)=x^{2753}(\bmod 3233)$.
Fourth, we compute the following:
$D(3185)=3185^{2753}=1816(\bmod 3233)$
$D(2038)=2038^{2753}=2008(\bmod 3233)$
$D(2460)=2460^{2753}=1717(\bmod 3233)$
$D(2550)=2550^{2753}=0411(\bmod 3233)$
Translating the blocks of ciphertext back to letters gives: SQUIRREL.
Extra The Euclidean algorithm consist of a sequence of 'division algorithms'; we start with 3120 and 17:
$3120=17 \cdot 183+\mathbf{9}$
$17=9 \cdot 1+8$
$9=8 \cdot 1+\mathbf{1}$
Now rewrite the equations, leave the remainders (marked in bold) on the left-hand side of the equation:
$\mathbf{9}=3120-17 \cdot 183$
$8=17-9 \cdot 1$
$\mathbf{1}=9-8 \cdot 1$
Now we will replace terms in the last equation: we sequentially substitute the remainder of the previous equation. You have to keep track of terms in red, do not multiply these factors.

$$
\begin{aligned}
\mathbf{1} & =9-8 \cdot 1 \\
& =9-(\mathbf{1 7}-\mathbf{9} \cdot \mathbf{1}) \cdot 1 \\
& =9 \cdot 2-17 \cdot \mathbf{1} \\
& =(\mathbf{3 1 2 0} \mathbf{- 1 7} \cdot \mathbf{1 8 3}) \cdot 2-17 \cdot 1 \\
& =3120 \cdot 2-17 \cdot 367 \\
& =3120 \cdot(2-17)+17 \cdot(3120-367) \\
& =17 \cdot 2753-3120 \cdot 15
\end{aligned}
$$

The third to last equation is already a linear combination of 3120 and 17 . But the coefficient of 17 is negative; so we add and substract the term $3120 \cdot 17$ in each of the summands. We get that the inverse of 17 modulo 3120 is $17^{-1}=-367=2753(\bmod 3120)$
15. (2pt) Let $A=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{k}\end{array}\right)$ be an $k \times k$ diagonal matrix. Show that for any $n \in \mathbf{N}$,

$$
A^{n}=\left(\begin{array}{ccc}
a_{1}^{n} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & a_{k}^{n}
\end{array}\right)
$$

We will prove this using induction:
The base step:It is true that $A^{1}=\left(\begin{array}{ccc}a_{1}^{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{k}^{1}\end{array}\right)$; because $a_{i}=a_{i}^{1}$ for any real number.
The inductive step: The inductive hypothesis is that for some integer n we have $A^{n}=\left(\begin{array}{ccc}a_{1}^{n} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{k}^{n}\end{array}\right)$
and we will use this fact to compute

$$
\begin{aligned}
A^{n+1}=A^{n} A & =\left(\begin{array}{ccc}
a_{1}^{n} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & a_{k}^{n}
\end{array}\right)\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & a_{k}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{1}^{n+1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & a_{k}^{n+1}
\end{array}\right)
\end{aligned}
$$

The last equality follows from the matrix multiplication properties. Note that we get the desired expression of A^{n+1}, completing the inductive step and therefore, completing the proof by induction.

