MATH 363 Discrete Mathematics SOLUTIONS: Assignment 7

1 Grading Scheme

1. Out of $\mathbf{2 p t}:+1$ pt If the basis step is stated and correct.
+1 pt If the inductive step is stated and correct.
2. Out of $\mathbf{3} \mathbf{p t}$: Full marks if an algorithm is given. -1 pt if it is unclear or has minor mistakes.
3. Out of $\mathbf{3 p t}:+2 \mathrm{pt}$ if the recursive formula is given
+1 pt if a clear justification of the formula is given
4. Out of $\mathbf{2 p t}:+1 \mathrm{pt}$ if the big-O estimate is correct

+ pt if it is cleary justified with the Master theorem or an equivalent argument. Leave a note: explaining why the conditions for the Master theorem are satisfied, if not stated why.

2 Assignment with solutions

1. (2pt) Let $\alpha=\frac{1+\sqrt{5}}{2}$. Recall that the first Fibonacci numbers are $f_{0}=0, f_{1}=1, f_{2}=1$. Use induction to prove that for any integer $n \geq 3, f_{n}$ satisfies

$$
f_{n}>\alpha^{n-2}
$$

The basis step starts by verifying that $f_{3}=2>\alpha$. This holds since $1+\sqrt{5}<1+3$. For the induction step we assume that $f_{k}>\alpha^{k-2}$ for all $k<n$. Then

$$
f_{n}=f_{n-1}+f_{n-2}>\alpha^{n-3}+\alpha^{n-4}=(\alpha+1) \alpha^{n-4}=\alpha^{n-2}
$$

The last equation follows from the fact that $1+\alpha=\frac{3+\sqrt{5}}{2}=\frac{6+2 \sqrt{5}}{4}=\alpha^{2}$.
2. (3pt each) Give the pseudocode of a recursive algorithm to:

- compute the greatest common divisor of two distinct positive integers a, b.
procedure $\operatorname{gcd}(a, b$: integers $0 \leq a<b)$
if $a=0$ then $\operatorname{gcd}(a, b):=b$
else $\operatorname{gcd}(a, b):=\operatorname{gcd}(b \bmod a, a)$
- give a factorization into prime factors of a positive integer n.
procedure $\operatorname{fac}(n$: integer $2 \leq n)$ is an array with a factorization of n into primes
$\mathrm{f}:=[]$
$M=\lfloor\sqrt{n}\rfloor$
$\mathrm{k}:=2$
$\mathrm{s}:=0$
while $s:=0$
while $k:=2 \leq M$

```
if \(k\) divides \(n\) then
\(f a c(n):=\) append \(f a c(k)\) to \(f a c(n / k)\)
\(s:=1\)
else \(k:=k+1\)
```

3. (3pt) Let z_{n} denote the number of zero-one strings of length n which do not contain two consecutive zeros. Find a recursive formula for z_{n} and justify this formula.
Let's call valid to a bit string which does not contain two consecutive zeros. A valid string s of length n either start with 0 or with 1 . If s it start with 1 , then deleting this bit will uniquely determine a valid string of length $n-1$. If s starts with 0 , then the second bit is 1 ; deleting these two bits will uniquely determine a valid string of length $n-2$.
We just argued that the set of valid strings of length $n-1$ are in one-to-one correspondence with valid strings of length n starting with 1 . And the set of valid strings of length $n-2$ are in one-to-one correspondence with valid strings of length n starting with 0 . Thus,

$$
z_{n}=z_{n-1}+z_{n-2}
$$

4. (2pt each) Let the functions f, g satisfy the following recursive relation:

- $f(n)=9 f(n / 3)+20 n^{2}$ when $n=3 k$,

Using the notation of the master theorem we have $a=9, b=3, c=20, d=2$.
The condition on the recursive formula is satisfied for all n multiple of $b=3$, in particular it is satisfied for all n which is a power of b.
Since $a=9=b^{d}$, we have that $f(n)$ is $O\left(n^{2} \log n\right)$.

- $g(n)=16 g(n / 4)+n n=4 k$.

Using the notation of the master theorem we have $a=16, b=4, c=1, d=1$.
The condition on the recursive formula is satisfied for all n multiple of $b=4$, in particular it is satisfied for all n which is a power of b.
Since $a=16>4=b^{d}$ and $\log _{4} 16=2$, we have that $f(n)$ is $O\left(n^{2}\right)$.
Give a big-O estimate for f and g.

