Logical equivalence

Statements S and T are logically equivalent

 $S \equiv T$

if and only if S and T have the same truth value no matter which

- predicates are subtituted into the statements,
- domain of discourse is considered.

Examples:

 $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$ $\forall x (P(x) \lor Q(x)) \not\equiv \forall x P(x) \lor \forall x Q(x)$ Think of \exists as a 'open-ended' connector OR.

Think of \forall as a 'open-ended' connector AND.

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x) \\ \forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\forall x (P(x) \lor Q(x)) \neq \forall x P(x) \lor \forall x Q(x) \exists x (P(x) \land Q(x)) \neq \exists x P(x) \land \exists x Q(x)$$

Negation of statements with quantifiers

S	$\neg S$
$\forall x \ \forall y P(x, y) \\ \forall y \ \forall x P(x, y)$	$\exists x \exists y \neg P(x, y) \\ \exists y \exists x \neg P(x, y) \end{cases}$
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y) \end{cases}$	$\forall x \ \forall y \ \neg P(x, y)$ $\forall y \ \forall x \ \neg P(x, y)$
$\forall x \exists y \ P(x,y)$	$\exists x \; \forall y \; \neg P(x,y)$
$\exists x \; \forall y \; P(x,y)$	$\forall x \exists y \neg P(x,y)$

Exercises

- Every real number, has an additive inverse.
 For every real number x, there is a real number y such that x + y = 0.
 ∀x ∈ ℝ ∃y ∈ ℝ, [x + y = 0].
- There exists an additive neutral elements for the real numbers. There exists a real number y such that for every real number x, x + y = x.
 ∃y ∈ ℝ ∀x ∈ ℝ, [x + y = x].

Exercises

► For every two integer numbers, if these integers are both positive, then the sum of these integers is positive.

 $\forall x \in \mathbb{Z} \; \forall y \in \mathbb{Z}, [x + y > 0]$

► Every real number except zero has a multiplicative inverse. $\forall x \in \mathbb{R}^* \exists y \in \mathbb{R}, [xy = 1]$ $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R}, [xy = 1]$ $\equiv \forall x \in \mathbb{R} [x \neq 0 \rightarrow (\exists y \in \mathbb{R}, (xy = 1)]$ $\equiv \forall x \in \mathbb{R} \exists y \in \mathbb{R}, [(x = 0) \lor (xy = 1)]$