Logical equivalence

Statements S and T are logically equivalent

$$
S \equiv T
$$

if and only if S and T have the same truth value no matter which

- predicates are subtituted into the statements,
- domain of discourse is considered.

Examples:

$$
\begin{aligned}
\exists x(P(x) \vee Q(x)) & \equiv \exists x P(x) \vee \exists x Q(x) \\
\forall x(P(x) \vee Q(x)) & \not \equiv \forall x P(x) \vee \forall x Q(x)
\end{aligned}
$$

Think of \exists as a 'open-ended' connector OR.
Think of \forall as a 'open-ended' connector AND.

$$
\begin{aligned}
\exists x(P(x) \vee Q(x)) & \equiv \exists x P(x) \vee \exists x Q(x) \\
\forall x(P(x) \wedge Q(x)) & \equiv \forall x P(x) \wedge \forall x Q(x)
\end{aligned}
$$

$$
\begin{array}{ll}
\forall x(P(x) \vee Q(x)) & \not \equiv \quad \forall x P(x) \vee \forall x Q(x) \\
\exists x(P(x) \wedge Q(x)) & \not \equiv \quad \exists x P(x) \wedge \exists x Q(x)
\end{array}
$$

Negation of statements with quantifiers

S	$\neg S$
$\forall x \forall y P(x, y)$	$\exists x \exists y \neg P(x, y)$
$\forall y \forall x P(x, y)$	$\exists y \exists x \neg P(x, y)$
$\exists x \exists y P(x, y)$	$\forall x \forall y \neg P(x, y)$
$\exists y \exists x P(x, y)$	$\forall y \forall x \neg P(x, y)$
$\forall x \exists y P(x, y)$	$\exists x \forall y \neg P(x, y)$
$\exists x \forall y P(x, y)$	$\forall x \exists y \neg P(x, y)$

Exercises

- Every real number, has an additive inverse.

For every real number x, there is a real number y such that $x+y=0$.

$$
\forall x \in \mathbb{R} \exists y \in \mathbb{R},[x+y=0]
$$

- There exists an additive neutral elements for the real numbers. There exists a real number y such that for every real number $x, x+y=x$.

$$
\exists y \in \mathbb{R} \forall x \in \mathbb{R},[x+y=x]
$$

Exercises

- For every two integer numbers, if these integers are both positive, then the sum of these integers is positive.
$\forall x \in \mathbb{Z} \forall y \in \mathbb{Z},[x+y>0]$
- Every real number except zero has a multiplicative inverse.

$$
\begin{aligned}
& \forall x \in \mathbb{R}^{*} \exists y \in \mathbb{R},[x y=1] \\
& \forall x \in \mathbb{R} \backslash\{0\} \exists y \in \mathbb{R},[x y=1] \\
& \equiv \forall x \in \mathbb{R}[x \neq 0 \rightarrow(\exists y \in \mathbb{R},(x y=1)] \\
& \equiv \forall x \in \mathbb{R} \exists y \in \mathbb{R},[(x=0) \vee(x y=1)]
\end{aligned}
$$

