Relations-Graphs-Trees review

\author{

1. Definitions
}
2. Understand theorems/algorithms
3. Apply theorems/algorithms

Relation definitions

- Relation from set A to set B, and relation on A,
- Properties:

Reflexive, transitive, symmetric, antisymmetric.
Equivalence relation.

- The digraph and matrix representation of a relation.

Graphs defintions (1)

For graphs with no loops nor multiple edges

- Connected components of a graph
- The partition of vertices into connected components
- The neighbourhood of a vertex
- Degree of a vertex
- Isolated vertices, $\operatorname{deg}(v)=0$
- K_{n}, C_{n}, H_{n} and $K_{n, m}$ (complete bipartite)
- Bipartite graphs

Graphs defintions (2)

- Paths (closed walk, cycle, simple path, trail).
- Eulerian and Hamiltonian path /circuits
- A complete Matching
- Planar graphs
- A face in a planar graph.
- The outer face of a planar graph.
- A proper colouring of
- the vertices in a graph / faces in a planar graph

Tree definitions

- A tree: rooted tree, m-ary tree, full m-ary tree and forest.
- Vertices:
leaf (external), internal vertices, parent and children of a vertex.
- The depth of a vertex; height of a rooted tree.
- A spanning tree of a connected graph.
- A minimum spanning tree of a graph with weighted edges.

Problems for Relations

- Given a relation R on A determine

Problems for Relations

- Given a relation R on A determine
- its representation as a digraph or as a matrix, (also for a relation from A to B).

Problems for Relations

- Given a relation R on A determine
- its representation as a digraph or as a matrix, (also for a relation from A to B).
- which properties R satisfy.

Problems for Relations

- Given a relation R on A determine
- its representation as a digraph or as a matrix, (also for a relation from A to B).
- which properties R satisfy.
- Represent problems with relations; e.g. student/class, city/state, etc.

Hard problems for relations

- For relations $R \subset A \times B$ and $S \subset B \times A$, determine the composition relation $S \circ R$.

Hard problems for relations

- For relations $R \subset A \times B$ and $S \subset B \times A$, determine the composition relation $S \circ R$.
- Use that relation R^{n} connects the endpoints of paths of length n in the digraph corresponding to R.

Theorems about graphs

- The handshaking Theorem

Theorems about graphs

- The handshaking Theorem
- Eulerian circuit/path : necessary and sufficient conditions

Theorems about graphs

- The handshaking Theorem
- Eulerian circuit/path : necessary and sufficient conditions
- Ore's thm: Sufficient conditions for a Hamiltonian cycle.

Theorems about graphs

- The handshaking Theorem
- Eulerian circuit/path : necessary and sufficient conditions
- Ore's thm: Sufficient conditions for a Hamiltonian cycle.
- Hall's thm: Necessary and sufficient conditions for matching in a bipartite graph

Theorems about graphs

- The handshaking Theorem
- Eulerian circuit/path : necessary and sufficient conditions
- Ore's thm: Sufficient conditions for a Hamiltonian cycle.
- Hall's thm: Necessary and sufficient conditions for matching in a bipartite graph
- Euler's formula: vertices/edges/faces of planar graphs.

Theorems about graphs

- The handshaking Theorem
- Eulerian circuit/path : necessary and sufficient conditions
- Ore's thm: Sufficient conditions for a Hamiltonian cycle.
- Hall's thm: Necessary and sufficient conditions for matching in a bipartite graph
- Euler's formula: vertices/edges/faces of planar graphs.
- 4-colour thm: coloring faces of planar graphs.

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees
- Objective and pseudocode of

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees
- Objective and pseudocode of
- Depth-first search.

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees
- Objective and pseudocode of
- Depth-first search.
- Breadth-first search.

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees
- Objective and pseudocode of
- Depth-first search.
- Breadth-first search.
- Prim's algorithm.

Theorems/algorithms for trees

- Formula for the number of internal vertices, leaves and edges in a full m-ary trees
- Objective and pseudocode of
- Depth-first search.
- Breadth-first search.
- Prim's algorithm.
- Kruskal's algorithm.

Hard problems for graphs/trees

- Use that $K_{3,3}, K_{5}$ are non-planar graphs.

Hard problems for graphs/trees

- Use that $K_{3,3}, K_{5}$ are non-planar graphs.
- Give examples of

Hard problems for graphs/trees

- Use that $K_{3,3}, K_{5}$ are non-planar graphs.
- Give examples of
- graphs (not) satisfying the conditions of theorems above.

Hard problems for graphs/trees

- Use that $K_{3,3}, K_{5}$ are non-planar graphs.
- Give examples of
- graphs (not) satisfying the conditions of theorems above.
- applications that use trees and the algorithms above.

Hard problems for graphs/trees

- Use that $K_{3,3}, K_{5}$ are non-planar graphs.
- Give examples of
- graphs (not) satisfying the conditions of theorems above.
- applications that use trees and the algorithms above.
- Given a problem involving graphs or trees, determine which of the algorithms/theorems above can be applied.

