- Last change to advise of any conflict between exam dates and religious holidays.
- ► Quiz tip: Always check your answers, substitute solution into initial system of equations $1 + 2 \cdot (-2) + 3 \cdot 3 = 6$ $2 \cdot 1 - 3 \cdot (-2) + 2 \cdot 3 = 14$ $3 \cdot 1 + (-2) - 3 = -2$

- Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

Definition

Two matrices are called **row equivalent** if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the same solution set.

Definition

A system of equations is called **inconsistent** if it has no solution. It is **consistent** otherwise.

Inconsistent system

Example

Solve the system of equations

$$x + y = 2$$

$$3x + 4y = 5$$

$$4x + 5y = 9$$

Using row operations: [Interactive row reducer]

$$\begin{pmatrix} 1 & 1 & | & 2 \\ 3 & 4 & 5 \\ 4 & 5 & | & 9 \end{pmatrix} \xrightarrow{\text{is row equivalent to}} \begin{pmatrix} 1 & 1 & | & 2 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 2 \end{pmatrix}$$

In other words, the original equations

$$x + y = 2$$
 $x + y = 2$ $3x + 4y = 5$ have the same solutions as $y = -1$ $4x + 5y = 9$ $0 = 2$

In the latter system, there is no way to make all equations true, so our **original system has no solutions** either.

Section 1.2

Row Reduction and Echelon Forms

Row Echelon Form

We'll come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. But *first*, what do we mean by "solved"?

A matrix is in row echelon form if

- 1. All zero rows are at the bottom.
- 2. Each *leading nonzero entry* of a row is to the *right* of the leading entry of the row above.
- 3. Below a leading entry of a row, all entries are zero.

Picture:

Definition

A **pivot** \star is the *first nonzero entry of a row* of a matrix in row echelon form.

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

- 4. The *pivot* in each nonzero row is *equal to* 1.
- 5. Each pivot is the only nonzero entry in its column.

Picture:

(1	0	*	0	*)	
$ \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	1	*	0	*	$\star = any number$
0	0	0	1	*	1 = pivot
0 /	0	0	0	0/	

Note: Echelon forms do not care whether or not a column is augmented. Just *ignore the vertical line*.

Question

Can every matrix be put into reduced row echelon form only using row operations?

Answer: Yes! We'll see this at the end of class.

Reduced Row Echelon Form

Continued

A reduced echelon form is the "solved" version of its original augment matrix:

$$egin{pmatrix} 1 & 0 & 0 & | & 1 \ 0 & 1 & 0 & | & -2 \ 0 & 0 & 1 & | & 3 \ \end{pmatrix}$$

Because it clearly translates into the solution

$$\begin{aligned} x &= 1 \\ y &= -2 \\ z &= 3, \end{aligned}$$

There are two caveats here:

- 1. What if the *last column* has a *pivot*? ... *inconsistent* system of equations.
- 2. What if there are *fewer pivots* than variables? ... *parametrized* solution set.

Inconsistent Matrices

$$\begin{pmatrix} 1 & 0 & \star & \star & \mid & 0 \\ 0 & 1 & \star & \star & \mid & 0 \\ 0 & 0 & 0 & 0 & \mid & 1 \end{pmatrix} \qquad \begin{array}{c} \star = \text{any number} \\ 1 = \text{pivot} \end{array}$$

A reduce echelon form corresponds to an **inconsistent system of equations** if and only if *the last* (i.e., the augmented) *column is a pivot column.*

Free Variables

Consider a row echelon form A which has no pivot on the last column, assume that it corresponds to a linear system of equations in the variables x_1, \ldots, x_n .

$$\begin{pmatrix} 1 & \star & 0 & \star & \star \\ 0 & 0 & 1 & \star & \star \end{pmatrix}$$

We say that x_i is a **free variable** if its corresponding column in A is *not a pivot column*. (What about the last column?) (Last column doesn't correspond to a variable.)

Example

The reduced row echelon form of the matrix for a linear system in x_1, x_2, x_3, x_4 is

$$\begin{pmatrix} 1 & 0 & 0 & 3 & | & 2 \\ 0 & 0 & 1 & 4 & | & -1 \end{pmatrix}$$

The free variables are x_2 and x_4 : their columns are *not pivot columns*.

The solution set is obtained by moving all free variables to the right-hand side of the =.

The form translates into the system of equations

$$\begin{cases} x_1 & +3x_4 = 2 \\ x_3 + x_4 = -1 & \implies & x_1 = 2 - 3x_4 \\ x_3 = -1 - 4x_4 & = -1 \end{cases}$$

The solution in parametric form is, for any values of x_2 and x_4 ,

$$(x_1, x_2, x_3, x_4) = (2 - 3x_4, x_2, -1 - 4x_4, x_4)$$

Important In a (consistent) linear system, you can choose *any value* for the free variables!

For instance, (2, 0, -1, 0) is a solution $(x_2 = x_4 = 0)$, and (5, 1, 3, -1) is a solution $(x_2 = 1, x_4 = -1)$.

Poll Which of the following matrices are in reduced row echelon form? A. $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ B. $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ C. $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ D. $\begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}$ E. $\begin{pmatrix} 0 & 1 & 8 & 0 \end{pmatrix}$ F. $\begin{pmatrix} 1 & 17 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$

Answer: B, D, E, F

Poll Is it possible for a system of linear equations to have exactly two solutions?

Summary

There are *three possibilities* for the reduced row echelon form of the augmented matrix of a linear system.

1. The last column is a pivot column.

In this case, the system is *inconsistent*. There are *zero* solutions, i.e. the solution set is *empty*. Picture:

$$\begin{pmatrix} 1 & 0 & | & \mathbf{0} \\ 0 & 1 & | & \mathbf{0} \\ 0 & 0 & | & \mathbf{1} \end{pmatrix}$$

2. Every column except the last column is a pivot column. In this case, the system has a *unique solution*. Picture:

$$\begin{pmatrix} 1 & 0 & 0 & | & \star \\ 0 & 1 & 0 & | & \star \\ 0 & 0 & 1 & | & \star \end{pmatrix}$$

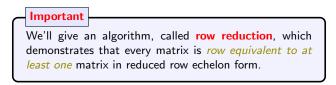
3. The last column is not a pivot column, and some other column isn't either. In this case, the system has *infinitely many* solutions, corresponding to the infinitely many possible values of the free variable(s). Picture:

$$\begin{pmatrix} 1 & \star & 0 & \star & | & \star \\ 0 & 0 & 1 & \star & | & \star \end{pmatrix}$$

Reduced Row Echelon Form

Maybe you can figure out why it's true!

The uniqueness statement is interesting—it means that, *nomatter how* you row reduce, you *always get the same matrix* in reduced row echelon form. (Assuming you only do the three legal row operations... and you don't make any arithmetic errors.)



Note: The row reduction algorithm does not care if a column is augmented: ignore the vertical line when row reducing.

- Step 1a Swap the 1st row with a lower one so a leftmost nonzero entry is in 1st row (if necessary).
- Step 1b Scale 1st row so that its leading entry is equal to 1.
- Step 1c Use row replacement so all entries below this 1 are 0.
- Step 2a Swap the 2nd row with a lower one so that the leftmost nonzero (uncovered) entry is in 2nd row.
- Step 2b Scale 2nd row so that its leading entry is equal to 1.
- Step 2c Use row replacement so all entries below this 1 are 0.
- Step 3a Swap the 3rd row with a lower one so that the leftmost nonzero (uncovered) entry is in 3rd row.

etc.

Last Step Use row replacement to clear all entries above the pivots, starting with the last pivot (to make life easier).

Example (Example 1)

$$egin{pmatrix} 0 & -7 & -4 & 2 \ 2 & 4 & 6 & 12 \ 3 & 1 & -1 & -2 \end{pmatrix}$$

[animated]

Row Reduction Example 1

Step 1a: Row swap to make this nonzero.

 $R_1 \longleftrightarrow R_2$

 $R_1 = R_1 \div 2$

$$\begin{pmatrix}
1 & 2 & 3 & 6 \\
0 & -7 & -4 & 2 \\
\hline
3 & 1 & -1 & -2
\end{pmatrix}$$

Step 1b: Scale to make this 1.

Step 1c: Subtract a multiple of the first row to clear this.

 $R_3 = R_3 - 3R_1$

Optional: swap rows 2 and 3 to make Step 2b easier later on.

$$R_2 \longleftrightarrow R_3$$

$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 0 & -5 & -10 & -20 \\ 0 & -7 & -4 & 2 \end{pmatrix}$$

Row Reduction Example 1, continued

$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & -5 & -10 & | & -20 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$

Step 2a: This is already nonzero.

Step 2b: Scale to make this 1. (There are no fractions because of the optional step before.) $R_2 = R_2 \div -5$

$$\begin{pmatrix} 1 & 2 & 3 & | & 6 \\ 0 & 1 & 2 & | & 4 \\ 0 & -7 & -4 & | & 2 \end{pmatrix}$$

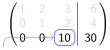
Step 2c: Add 7 times the second row to clear this.

/1	2	3	6
0	1	2	4 30
0/	0	10	30/

Note: Step 2 never messes up the first (nonzero) column of the matrix, because it looks like this:

"Active" row
$$\longrightarrow \begin{pmatrix} 1 & \star & \star & \star \\ 0 & \star & \star & \star \\ 0 & \star & \star & \star \end{pmatrix}$$

$$R_3 = R_3 + 7R_2$$



Step 3a: This is already nonzero. Step 3b: Scale to make this 1.

 $R_3 = R_3 \div 10$

Note: Step 3 never messes up the columns to the left. Note: The matrix is now in row echelon form!

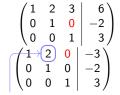
$$\begin{pmatrix}
1 & 2 & 3 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{pmatrix}$$

Last step: Add multiples of the third row to clear these.

 $R_2 = R_2 - 2R_3$

 $R_1 = R_1 - 3R_3$

 $R_1 = R_1 - 2R_2$ \cdots



Last step: Add -2 times the third row to clear this.

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix}$$

Success! The reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \qquad \Longrightarrow \qquad \begin{cases} x & x = 1 \\ y & y = -2 \\ z = 3 \end{cases}$$

The linear system						
2x + 10y = -1 $3x + 15y = 2$	gives rise to the mat	trix $\begin{pmatrix} 2 & 10 \\ 3 & 15 \\ \end{pmatrix}$	$\begin{pmatrix} 1\\2 \end{pmatrix}$.			
Let's row reduce it: [interactive row reducer]						
$ \begin{pmatrix} 2 & 10 & & -1 \\ 3 & 15 & & 2 \end{pmatrix} $	$R_1 = R_1 \div 2$	$\begin{pmatrix} 1 & 5 & & -\frac{1}{2} \\ 3 & 15 & & 2 \end{pmatrix}$	(Step 1b)			
	$R_2 = R_2 - 3R_1$	$ \begin{pmatrix} 1 & 5 & & -\frac{1}{2} \\ 0 & 0 & & \frac{7}{2} \end{pmatrix} $	(Step 1b) (Step 1c)			
	$R_2 = R_2 \times \frac{2}{7}$	$ \begin{pmatrix} 1 & 5 & & -\frac{1}{2} \\ 0 & 0 & & 1 \end{pmatrix} $	(Step 2b)			
	$R_1 = R_1 + \frac{1}{2}R_2$	$\begin{pmatrix} 1 & 5 & & 0 \\ 0 & 0 & & 1 \end{pmatrix}$	(Step 2c)			

The row reduced matrix $\begin{pmatrix} 1 & 5 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$

corresponds to the	x + 5y = 0
<i>inconsistent</i> system	0 = 1.

The linear system

$$2x + y + 12z = 1$$

$$x + 2y + 9z = -1$$
 gives rise to the matrix
$$\begin{pmatrix} 2 & 1 & 12 & | & 1 \\ 1 & 2 & 9 & | & -1 \end{pmatrix}$$

Let's row reduce it: [interactive row reducer]

$$\begin{pmatrix} 2 & 1 & 12 & | & 1 \\ 1 & 2 & 9 & | & -1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 9 & | & -1 \\ 2 & 1 & 12 & | & 1 \end{pmatrix}$$
(Optional)
$$\begin{array}{c} R_2 = R_2 - 2R_1 \\ \hline R_2 = R_2 \div -3 \\ \hline R_1 = R_1 - 2R_2 \\ \hline R_1 = R_1 - 2R_2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 9 & | & -1 \\ 0 & -3 & -6 & | & 3 \end{pmatrix}$$
(Step 1c)
$$\begin{array}{c} R_2 = R_2 \div -3 \\ \hline R_1 = R_1 - 2R_2 \\ \hline R_1 = R_1 - 2R_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 5 & | & 1 \\ 0 & 1 & 2 & | & -1 \end{pmatrix}$$
(Step 2c)

The row reduced matrix

$$\begin{pmatrix} 1 & 0 & 5 & | & 1 \\ 0 & 1 & 2 & | & -1 \end{pmatrix}$$
 corresponds to the
$$\begin{cases} x + 5z = & 1 \\ y + 2z = -1 \end{cases}$$

The system

$$x + 5z = 1$$
$$y + 2z = -1$$

comes from a matrix in reduced row echelon form. Are we done? Is the system solved?

Yes! Rewrite:

$$x = 1 - 5z$$
$$y = -1 - 2z$$

For any value of z, there is exactly one value of x and y that makes the equations true. But z can be *anything we want*!

So we have found the solution set: it is all values x, y, z where

 $\begin{array}{l} x = 1 - 5z \\ y = -1 - 2z \\ (z = z) \end{array}$ for z any real number.

This is called the parametric form for the solution. [interactive picture] For instance, (1, -1, 0) and (-4, -3, 1) are solutions.