
Section 1.3

Vector Equations



Motivation

Linear algebra’s two viewpoints:

I Algebra: systems of equations and their solution sets

I Geometry: intersections of points, lines, planes, etc.

x − 3y = −3

2x + y = 8

The geometry will give us better insight into the properties of systems of
equations and their solution sets.



Vectors

Elements of Rn can be considered points...

or vectors:
arrows with a given

length and direction.

the point (1, 3)

the vector
(1

3

)

x-coordinate: width of vector horizontally,
y -coordinate: height of vector vertically.

It is convenient to express vectors in Rn as matrices with n rows and one
column:

v =

1
2
3


Note: Some authors use bold typography for vectors: v.



Vector Algebra (applies to vectors in Rn)

Definition

I We can add two vectors together:a
b
c

+

x
y
z

 =

a + x
b + y
c + z

 .

I We can multiply, or scale, a vector by a real number:

c

x
y
z

 =

c · x
c · y
c · z

 .

Distinguish a vector from a real number: call c a scalar.
cv is called a scalar multiple of v.

For instance,

1
2
3

+

4
5
6

 =

5
7
9

 and − 2

1
2
3

 =

−2
−4
−6

 .



Addition: The parallelogram law

v

w

w

v

v
+
w

5 = 4 + 1

5
=

3
+

2
Geometrically, the sum of two vectors v,w is obtained by creating a
parallelogram:

1. Place the tail of w at the head of v .

2. Sum vector v + w has tail: tail of v

3. Sum vector v + w has head: head of w

The width of v + w is the sum of the widths, and likewise with the heights. For
example, (

1
3

)
+

(
4
2

)
=

(
5
5

)
.

Note: addition is commutative.



Geometry of vector substraction

If you add v − w to w, you get v.

v

w

v −
w

Geometrically, the difference of two vectors v,w is obtained as follows:

1. Place the tails of w and v at the same point.

2. Difference vector v − w has tail: head of w

3. Difference vector v − w has head: head of v

For example, (
1
4

)
−
(

4
2

)
=

(
−3
2

)
.

This works in higher dimensions too!



Towards “linear spaces”

Scalar multiples of a vector:
have the same direction but a different length.
The scalar multiples of v form a line.

Some multiples of v .

v

2v

− 1
2
v

0v

v =

(
1
2

)
2v =

(
2
4

)
−1

2
v =

(
− 1

2

−1

)
0v =

(
0
0

)

All multiples of v .



Linear Combinations

We can generate new vectors with addition and scalar multiplication:

w = c1v1 + c2v2 + · · ·+ cpvp

We call w a linear combination of the vectors v1, v2, . . . , vp, and
the scalars c1, c2, . . . , cp are called the weights or coefficients.

Definition

I c1, c2, . . . , cp are

scalars,

I v1, v2, . . . , vp are

vectors in Rn, and so is w.

Example

v

w

Let v =

(
1
2

)
and w =

(
1
0

)
.

What are some linear combinations of v and w?

I v + w

I v − w

I 2v + 0w

I 2w

I −v



Poll

Is there any vector in R2 that is not a linear
combination of v and w?

Poll

No: in fact, every vector in R2 is a combination of v and w .

v

w

(The purple lines are to help measure how much of v and w you need to reach
a given point.)



More Examples

v

What are some linear combinations of v =

(
2
1

)
?

I 3
2
v

I − 1
2
v

I . . .

What are all linear combinations of v?

All vectors cv for c a real number. I.e., all scalar
multiples of v . These form a line.

v

w

Question
What are all linear combinations of

v =

(
2
2

)
and w =

(
−1
−1

)
?

Answer: The line which contains both vectors.

What’s different about this example and the one on
the poll?



Span

It will be important to handle all linear combinations of a set of vectors.

Definition
Let v1, v2, . . . , vp be vectors in Rn. The span of v1, v2, . . . , vp is the collection
of all linear combinations of v1, v2, . . . , vp, and is denoted Span{v1, v2, . . . , vp}.
In symbols:

Span{v1, v2, . . . , vp} =
{
x1v1 + x2v2 + · · ·+ xpvp

∣∣ x1, x2, . . . , xp in R
}

.

In other words:

I Span{v1, v2, . . . , vp} is the subset spanned by or generated by
v1, v2, . . . , vp.

I it’s exactly the collection of all b in Rn such that the vector equation
(unknowns x1, x2, . . . , xp)

x1v1 + x2v2 + · · ·+ xpvp = b

is consistent i.e., has a solution.



Pictures of Span in R2

Drawing a picture of Span{v1, v2, . . . , vp} is the same as drawing a picture of
all linear combinations of v1, v2, . . . , vp.

Span{v}

v

Span{v ,w}

v

w

Span{v ,w}

v

w



Pictures of Span in R3

Span{v}

v

Span{v ,w}

v

w

v

w
u

Span{u, v ,w} Span{u, v ,w}

v

w

u

Even if intuition and a geometric feeling of what Span represents
is important for class. You will use the definition of Span to
solve problems on the exams.

Important



Systems of Linear Equations

Question

Is

 8
16
3

 a linear combination of

1
2
6

 and

−1
−2
−1

?

This means: can we solve the equation

x

1
2
6

+ y

−1
−2
−1

 =

 8
16
3


where x and y are the unknowns (the coefficients)? Rewrite: x

2x
6x

+

 −y−2y
−y

 =

 8
16
3

 or

 x − y

2x − 2y

6x − y

 =

 8
16
3

 .

This is just a system of linear equations:

x − y = 8

2x − 2y = 16

6x − y = 3.



Systems of Linear Equations

Is

 8
16
3

 a linear combination of

1
2
6

 and

−1
−2
−1

?

x − y = 8

2x − 2y = 16

6x − y = 3

matrix form

 1 − 1 8
2 − 2 16
6 − 1 3


row reduce

 1 0 −1
0 1 −9
0 0 0


solution x = −1

y = −9
Conclusion:

−

1
2
6

− 9

−1
−2
−1

 =

 8
16
3


Systems of linear equations depend on the Span of a set of vectors!



Span of vectors and Linear equations

We have three equivalent ways to think about linear systems of equations:

Let v1, v2, . . . , vp, b be vectors in Rn and x1, x2, . . . , xp be scalars.

1. A vector b is in the span of v1, v2, . . . , vp.

2. The linear system with augmented matrix | | | |
v1 v2 · · · vp b
| | | |

 ,

is consistent (vi ’s and b are the columns).

3. The vector equation x1v1 + x2v2 + · · ·+ xpvp = b, has a
solution.

Summary

Equivalent means that, for any given list of vectors v1, v2, . . . , vp, b, either all
three statements are true, or all three statements are false.



Extra: So, what is Span?

How many vectors are in Span


0

0
0

?

A. Zero

B. One

C. Infinity

To think about...

So far, it seems that Span{v1, v2, . . . , vp} is the smallest “linear space” (line,
plane, etc.) containing the origin and all of the vectors v1, v2, . . . , vp.

We will make this precise later.



Extra: Points and Vectors

So what is the difference between a point and a vector?

A vector need not start at the origin: it can be located anywhere! In other
words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector

(
1
2

)
.

However, unless otherwise specified, we’ll assume a vec-
tor starts at the origin: we’ll usually be sloppy and iden-
tify the vector

(
1
2

)
with the point (1, 2).

This makes sense in the real world: many physical quantities, such as velocity,
are represented as vectors. But it makes more sense to think of the velocity of
a car as being located at the car.

Another way to think about it: a vector is a difference between two points, or
the arrow from one point to another.

For instance,

(
1
2

)
is the arrow from (1, 1) to (2, 3).

(1, 1)

(2, 3)

(1
2

)


