- ▶ WeBWorK due today at 11:59pm.
- > The quiz on Friday covers through Section 1.2 (last weeks material)

Good references about applications(introductions to chapters in book)

- Aircraft design, Spacecraft controls (Ch. 2, 4)
- Imaging distorsion, Image processing, Computer graphics (Ch. 3,7,8)
- Management, Economics, Making sense of a lot of data (Ch. 1, 6)
- Ecology and sustainability (Ch. 5)
- Thermodynamics, heat transfer (Worksheet week 1)
- A reference to Surely you're joking Mr. Feynman (Ch. 3)

I'll try to find something for you guys:

- Mechanical systems, Solar panels, origami, swarm behaviour
- Neuroscience, Prehealth, Population growth
- Computer logic
- Optimization

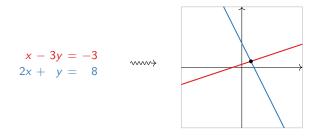
Section 1.3

Vector Equations

Motivation

Linear algebra's *two viewpoints*:

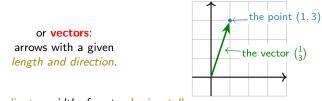
- > Algebra: systems of equations and their solution sets
- Geometry: intersections of points, lines, planes, etc.



The **geometry** will give us *better insight into the properties* of systems of equations and their solution sets.

Vectors

Elements of Rⁿ can be considered *points*...



x-coordinate: *width* of vector *horizontally*, *y*-coordinate: *height* of vector *vertically*.

It is *convenient* to express vectors in \mathbb{R}^n as matrices with *n* rows and *one column*:

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Note: Some authors use **bold typography** for vectors: **v**.

Definition

We can add two vectors together:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a+x \\ b+y \\ c+z \end{pmatrix}.$$

• We can multiply, or scale, a vector by a real number:

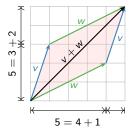
$$c\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} c \cdot x\\ c \cdot y\\ c \cdot z \end{pmatrix}.$$

Distinguish a vector from a real number: call c a scalar. cv is called a scalar multiple of v.

For instance,

$$\begin{pmatrix} 1\\2\\3 \end{pmatrix} + \begin{pmatrix} 4\\5\\6 \end{pmatrix} = \begin{pmatrix} 5\\7\\9 \end{pmatrix} \quad \text{and} \quad -2 \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} -2\\-4\\-6 \end{pmatrix}.$$

Addition: The parallelogram law



Geometrically, the sum of two vectors **v**,**w** is obtained by **creating a parallelogram**:

- 1. Place the tail of w at the head of v.
- 2. Sum vector $\mathbf{v} + \mathbf{w}$ has tail: tail of **v**
- 3. Sum vector v + w has **head**: head of w

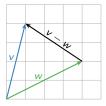
The width of v + w is the sum of the widths, and likewise with the heights. For example,

$$\begin{pmatrix} 1\\3 \end{pmatrix} + \begin{pmatrix} 4\\2 \end{pmatrix} = \begin{pmatrix} 5\\5 \end{pmatrix}.$$

Note: addition is commutative.

Geometry of vector substraction

If you add $\mathbf{v} - \mathbf{w}$ to \mathbf{w} , you get \mathbf{v} .



Geometrically, the difference of two vectors **v**,**w** is obtained as follows:

- 1. Place the tails of w and v at the same point.
- 2. Difference vector v w has **tail**: head of w
- 3. Difference vector v w has head: head of v

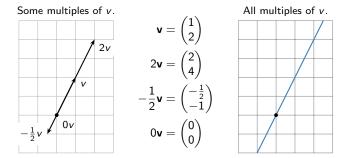
For example,

$$\begin{pmatrix} 1\\4 \end{pmatrix} - \begin{pmatrix} 4\\2 \end{pmatrix} = \begin{pmatrix} -3\\2 \end{pmatrix}.$$

This works in higher dimensions too!

Scalar multiples of a vector:

have the same *direction* but a different *length*. The *scalar multiples* of v form a line.



Linear Combinations

We can generate new vectors with addition and scalar multiplication:

 $\mathbf{w} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \dots + \mathbf{c}_p \mathbf{v}_p$

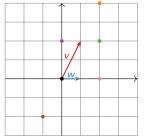
We call **w** a **linear combination** of the vectors v_1, v_2, \ldots, v_p , and the scalars c_1, c_2, \ldots, c_p are called the **weights** or **coefficients**.

 \blacktriangleright c_1, c_2, \ldots, c_p are scalars,

Definition

 \blacktriangleright **v**₁, **v**₂, ..., **v**_p are vectors in **R**ⁿ, and so is **w**.

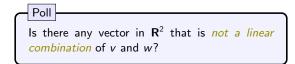
Example



Let
$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w?

- ► *v* + *w*
- ► v w
- ► 2v + 0w
- ► 2w
 - -v



No: in fact, *every* vector in \mathbf{R}^2 is a combination of v and w.



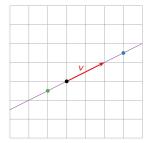
(The purple lines are to help measure how much of v and w you need to reach a given point.)

Poll

Which of the following are *possible shapes for* the Span $\{v_1, v_2\}$ of 2 vectors in \mathbb{R}^3 ? Select all possible shapes!

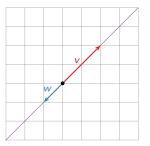
- A Empty
- B Point
- C Line
- D Circle
- E the grid points on a 2-plane
- F the 4-plane

Answer: *B* and *C*. (*Span is never empty*, more details on Friday. and *two vectors may span a 2-plane*, but not only its grid points)



What are some linear combinations of $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$?

What are *all* linear combinations of v? All vectors cv for c a real number. I.e., all *scalar multiples* of v. These form a *line*.



Question

What are all linear combinations of

$$v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$?

Answer: The line which contains both vectors.

What's different about this example and the one on the poll?

It will be important to handle all linear combinations of a set of vectors.

Definition

Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n . The **span** of v_1, v_2, \ldots, v_p is the collection of all linear combinations of v_1, v_2, \ldots, v_p , and is denoted $\text{Span}\{v_1, v_2, \ldots, v_p\}$. In symbols:

Span{
$$v_1, v_2, \ldots, v_p$$
} = { $x_1v_1 + x_2v_2 + \cdots + x_pv_p \mid x_1, x_2, \ldots, x_p \text{ in } \mathbf{R}$ }.

In other words:

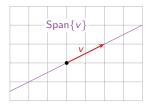
- Span{ v_1, v_2, \ldots, v_p } is the subset spanned by or generated by v_1, v_2, \ldots, v_p .
- ▶ it's exactly the collection of all b in Rⁿ such that the vector equation (unknowns x₁, x₂,..., x_p)

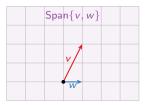
$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{b}$$

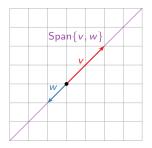
is consistent i.e., has a solution.

Pictures of Span in R^2

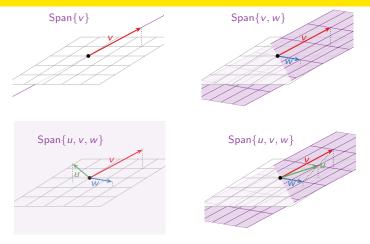
Drawing a picture of Span $\{v_1, v_2, \ldots, v_p\}$ is the same as drawing a picture of all linear combinations of v_1, v_2, \ldots, v_p .







Pictures of Span in \mathbb{R}^3



Important

Even if *intuition and a geometric feeling* of what Span represents is important for class. You **will use the definition** of Span to solve problems on the exams.

Systems of Linear Equations

1.1.1

Question
Is
$$\begin{pmatrix} 8\\16\\3 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1\\2\\6 \end{pmatrix}$ and $\begin{pmatrix} -1\\-2\\-1 \end{pmatrix}$?

This means: can we solve the equation

$$x \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + y \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$

where x and y are the unknowns (the coefficients)? Rewrite:

$$\begin{pmatrix} x \\ 2x \\ 6x \end{pmatrix} + \begin{pmatrix} -y \\ -2y \\ -y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} x - y \\ 2x - 2y \\ 6x - y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}.$$

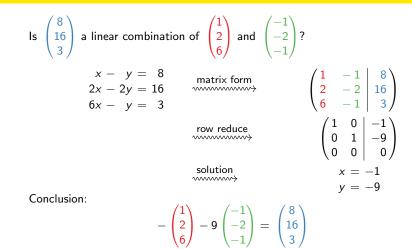
This is just a system of linear equations:

$$x - y = 8$$

$$2x - 2y = 16$$

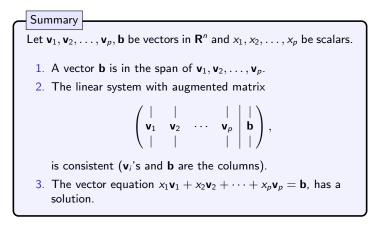
$$6x - y = 3.$$

Systems of Linear Equations

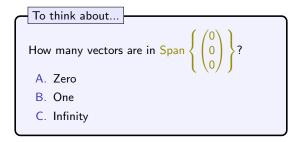


Systems of linear equations depend on the Span of a set of vectors!

We have three equivalent ways to think about linear systems of equations:



Equivalent means that, for any given list of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p, \mathbf{b}$, *either all three* statements are true, *or all three* statements are false.



So far, it seems that $\text{Span}\{v_1, v_2, \dots, v_p\}$ is the smallest "linear space" (line, plane, etc.) containing **the origin** and all of the vectors v_1, v_2, \dots, v_p .

We will make this precise later.

So what is the difference between a point and a vector?

A vector need not start at the origin: *it can be located anywhere*! In other words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector $\begin{pmatrix} 1\\ 2 \end{pmatrix}$.

However, unless otherwise specified, we'll assume a vector starts at the origin: we'll usually be sloppy and identify the vector $\binom{1}{2}$ with the point (1,2).

This makes sense in the real world: many physical quantities, such as velocity, are represented as vectors. But it makes more sense to think of the velocity of a car as being located at the car.

Another way to think about it: a vector is a *difference* between two points, or the arrow from one point to another. $(2 \ 3)$

For instance,
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 is the arrow from (1,1) to (2,3).

