When a vector is a linear combinations of...

Review

Conclusion:

Yes! Use the weights $x_1 = -1$ and $x_2 = -9$:

$$(-1)\begin{pmatrix}1\\2\\6\end{pmatrix}+(-9)\begin{pmatrix}-1\\-2\\-1\end{pmatrix}=\begin{pmatrix}8\\16\\3\end{pmatrix}$$

Section 1.4

The Matrix Equation Ax = b

Today: Spans and Solutions to Equations

Let $\mathbf{b} \in \mathbf{R}^n$ and A be a matrix with columns $v_1, v_2, \ldots, v_n \in \mathbf{R}^n$:

$$A = \begin{pmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ | & | & | & | \end{pmatrix}$$

Matrix \times Vector

the first number is the second number is the number of rows the number of columns Let A be an $m \times n$ matrix $A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \quad \text{with columns } v_1, v_2, \dots, v_n$

Definition

The **product** of A with a vector x in \mathbf{R}^n is the linear combination

$$Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \xrightarrow{\text{this means the equality}}_{\substack{\text{def inition}}} x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

The output is a vector in \mathbf{R}^m .

Necessary: Number of columns of A equals number of rows of x.

Matrix Equations An example

Question

Let v_1, v_2, v_3 be vectors in \mathbb{R}^3 . How can you write the vector equation

$$2v_1 + 3v_2 - 4v_3 = \begin{pmatrix} 7\\2\\1 \end{pmatrix}$$

in terms of matrix multiplication?

$\frac{\mathsf{Matrix} \times \mathsf{Vector}}{\mathsf{Another way}}$

Definition

A *row vector* is a matrix with one row. The **product** of a row vector of length n and a (column) vector of length n is a scalar!

$$\begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\text{def}}{=} a_1 x_1 + \cdots + a_n x_n.$$

If A is an $m \times n$ matrix with rows r_1, r_2, \ldots, r_m , and x is a vector in \mathbb{R}^n , then

$$Ax = \begin{pmatrix} -r_1 - r_2 - r_$$

This is a vector in R^m.

$\begin{array}{l} \mathsf{Matrix} \times \mathsf{Vector} _{\mathsf{Both ways}} \end{array}$

Example

$$\begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} =$$

Note this is the same as before:

Now you have two ways of computing Ax.

In the second, you calculate Ax one entry at a time.

Both are convenient, so we'll use both.

Spans and Solutions to Equations Example 1

Is b contained in the span of the columns of A?

Spans and Solutions to Equations

Example 1, explained

Question Let $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$. Does the equation $Ax = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's check by solving the matrix equation using row reduction. The first step is to put the system into an augmented matrix.

$$\begin{pmatrix} 2 & 1 & | & 0 \\ -1 & 0 & | & 2 \\ 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{pmatrix}$$

The last equation is 0 = 1, so the system is *inconsistent*.

In other words, the matrix equation

$$\begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$$

has no solution.

Spans and Solutions to Equations Example 2

Is b contained in the span of the columns of A?

Spans and Solutions to Equations

Example 2, explained

~

Question
Let
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -1 \end{pmatrix}$$
. Does the equation $Ax = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ have a solution?

Answer: Let's do this systematically using row reduction.

$$\begin{pmatrix} 2 & 1 & | & 1 \\ -1 & 0 & | & -1 \\ 1 & -1 & | & 2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

This gives us

$$x=1 \qquad y=-1.$$

This is consistent with the picture on the previous slide:

$$1\begin{pmatrix} 2\\-1\\1 \end{pmatrix} - 1\begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \quad \text{or} \quad A\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}.$$

Linear Systems, Vector Equations, Matrix Equations,

Now have four equivalent ways of writing linear systems:

1. As a system of equations:

$$2x_1 + 3x_2 = 7 x_1 - x_2 = 5$$

2. As an *augmented matrix*:

$$\begin{pmatrix} 2 & 3 & | & 7 \\ 1 & -1 & | & 5 \end{pmatrix}$$

3. As a vector equation $(x_1v_1 + \cdots + x_nv_n = b)$:

$$x_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

4. As a matrix equation (Ax = b):

$$\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$

We will move back and forth freely between these over and over again.

Here are criteria for a linear system to always have a solution.

Theorem

Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent

- 1. Ax = b has a solution for all b in \mathbb{R}^m .
- 2. The span of the columns of A is all of \mathbb{R}^m .
- 3. A has a pivot *in each row*.

recall that this means that for given *A*, either they're all true, or they're all false

Why is (1) the same as (3)?

Look at **reduced echelon** forms of *A*.

► If A has a pivot in each row:

(1)	0	*	0	*)		(1)	0	*	0	*	*
0	1	*	0	*	and $(A \mid b)$	0	1	*	0	*	*
0/	0	0	1	*/	reduces to:	<u>\</u> 0	0	0	1	*	×/

.

There's no *b* that makes it inconsistent, so there's *always a solution*.

If A doesn't have a pivot in each row:

 $\begin{pmatrix} 1 & 0 & \star & 0 & \star \\ 0 & 1 & \star & 0 & \star \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{c|c} \text{and this can be} \\ \text{made} \\ \text{inconsistent:} \end{pmatrix} \begin{pmatrix} 1 & 0 & \star & 0 & \star & 0 \\ 0 & 1 & \star & 0 & \star & 0 \\ 0 & 0 & 0 & 0 & 0 & 16 \end{pmatrix}.$

Section 1.5

Solution Sets of Linear Systems

Plan For Today

Describe and draw the solution set of Ax = b, using spans.

Recall: the solution set is the collection of all vectors x such that Ax = b is true.

Example 1

Question

What is the solution set of Ax = 0, where

$$\mathsf{A} = egin{pmatrix} 1 & 3 & 4 \ 2 & -1 & 2 \ 1 & 0 & 1 \end{pmatrix}$$
?

We know how to do this: first form an augmented matrix and row reduce.

The only solution is the trivial solution x = 0.

Example 2

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}$$
 and $b = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$?

Answer:
$$x = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 for any x_2 in **R**.
This is a *translate* of Span $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$: it is the parallel line through $p = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$.

It can be written

$$\operatorname{Span}\left\{ \begin{pmatrix} 3\\1 \end{pmatrix} \right\} + \begin{pmatrix} -3\\0 \end{pmatrix}.$$

Example 2, explained

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \text{ and } b = \begin{pmatrix} -3 \\ -6 \end{pmatrix}?$$

$$\begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \xrightarrow{-3} \text{row reduce} & \begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix} \xrightarrow{-3} \text{equation} \text{ and } x_1 - 3x_2 = -3$$

$$\begin{array}{c} \text{parametric form} \\ \text{varefunction} \text{ and } x_1 = 3x_2 - 3 \\ x_2 = x_2 + 0 \text{ and } x_2 = x_2 + 0 \text{ and } x_2 = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \end{pmatrix}.$$

Note that p is itself a solution: take $x_2 = 0$.

Example 3

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}?$$

Answer:
$$x = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 for any x_2 in **R**. The solution set is Span $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$.

Note: *one* free variable means the solution set is a *line* in \mathbf{R}^2 (2 = # variables = # columns).

Example 3, explained

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix}?$$

$$\begin{pmatrix} 1 & -3 \\ 2 & -6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix}$$

$$\stackrel{\text{equation}}{\xrightarrow{}} x_1 - 3x_2 = 0$$

$$parametric \text{ form} \\ \xrightarrow{} x_2 = x_2$$

$$parametric \text{ vector form} \\ \xrightarrow{} x_2 = x_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

These equations are called the parametric vector form of the solutions.

It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

Parametric Vector Form and Span In general

Let A be an $m \times n$ matrix. If the *free variables* in the equation Ax = b are x_i, x_j, x_k, \ldots

And the parametric vector form of the solution is

 $x = b' + x_i v_i + x_j v_j + x_k v_k + \cdots$

for some vectors $b', v_i, v_j, v_k, \ldots$ in \mathbf{R}^n , and any scalars x_i, x_j, x_k, \ldots

Then the solution set is

$$b' + \operatorname{Span}\{v_i, v_j, v_k, \ldots\}.$$

Parametric Vector form

Example 4

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix}?$$

Answer: Span
$$\left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

[not pictured here]

Note: *two* free variables means the solution set is a *plane* in \mathbf{R}^4 (4 = # variables = # columns).

Parametric vector form

Example 4, explained

Question

What is the solution set of Ax = 0, where A =

$$\begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

equations

$$\begin{cases} x_1 & -8x_3 - 7x_4 = 0 \\ x_2 + 4x_3 + 3x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 = 8x_3 + 7x_4 \\ x_2 = -4x_3 - 3x_4 \\ x_3 = x_3 \\ x_4 = x_4 \end{cases}$$

parametric vector form

$$\begin{cases} x_1 = 8x_3 + 7x_4 \\ x_2 = -4x_3 - 3x_4 \\ x_3 = x_3 \\ x_4 = x_4 \end{cases}$$

$$\begin{cases} x_1 = 8x_3 + 7x_4 \\ x_2 = -4x_3 - 3x_4 \\ x_3 = x_3 \\ x_4 = x_4 \end{cases}$$

Everything is easier when b = 0, so we start with this case.

Definition

A system of linear equations of the form Ax = 0 is called *homogeneous*.

A homogeneous system *always has the solution* x = 0. This is called the *trivial solution*. The nonzero solutions are called **nontrivial**.

The opposite:

Definition

A system of linear equations of the form Ax = b with $b \neq 0$ is called **nonhomogeneous** or **inhomogeneous**.

Poll

Solutions for Homogeneous Systems

Let c be a scalar, u, v be vectors, and A a matrix.
A(u + v) = Au + Av
A(cv) = cAv
See Lay, §1.4, Theorem 5.

Consequence: If u and v are solutions to Ax = 0, then so is every vector in Span $\{u, v\}$. Why?

 Important			
The set of	solutions to	$\Delta x = 0$ is a	cnan
The set of	solutions to	Ax = 0 is a	span.

Solutions for Consistent Nonhomogeneous Systems

When consistent

The set of solutions to Ax = b, is parallel to a span.

Why? solutions are obtained by taking one specific or particular solution p to Ax = b, and adding all solutions to Ax = 0.

If Ap = b and Ax = 0, then

Note:

Works for any specific solution p: it doesn't matter how one found it!

Question

Give a system whose solution set passes through point p and it is *parallel to* the solution set of Ax = 0.

1. Set b = Ap.

Entries in *p* are the weights that produce *b* as a linear combination of columns of *A*.

- 2. Now p is a specific solution to Ax = b,
- 3. so Ax = b is the system we wanted.

Take out: If we describe the solution set of Ax = 0, then we can describe the solution set of Ax = b for all b in the Span of columns of A.

Extra: An homogeneous System Example 5

Question

What is the solution set of Ax = 0, where

Note: one free variable means the solution set is a line in \mathbf{R}^3 (3 = # variables = # columns).

Extra: An homogeneous System

Example 5, explained

Question

What is the solution set of Ax = 0, where

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & -5 \\ 1 & 0 & -2 \end{pmatrix}$$
row reduce
$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
equations
$$\begin{cases} x_1 & -2x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$
parametric form
$$\begin{cases} x_1 = 2x_3 \\ x_2 = -x_3 \\ x_3 = x_3 \end{cases}$$
parametric vector form
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

Extra: A Nonhomogeneous System Example 6

Question

What is the solution set of Ax = b, where

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & -5 \\ 1 & 0 & -2 \end{pmatrix} \text{ and } b = \begin{pmatrix} -5 \\ -3 \\ -2 \end{pmatrix}?$$

Answer: Span $\left\{ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \right\} + \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}.$

The solution set is a *translate* of

Span
$$\left\{ \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} \right\}$$
 :

it is the parallel line through

$$p = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}.$$

Extra: A Nonhomogeneous System

Example 6, explained

Question

What is the solution set of Ax = b, where