When a vector is a linear combinations of...

Review

Is $\left(\begin{array}{c}8 \\ 16 \\ 3\end{array}\right)$ a linear combination of $\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)$?

$$
\begin{array}{rcr|r}
x_{1}-x_{2}=8 \\
2 x_{1}-2 x_{2}=16 \\
6 x_{1}-x_{2}=3
\end{array} \quad \begin{array}{cc|r}
\text { matrix form } \\
\text { munnum } \rightarrow
\end{array} \quad\left(\begin{array}{ll|r}
1 & -1 & 8 \\
2 & -2 & 16 \\
6 & -1 & 3
\end{array}\right)
$$

Conclusion:
Yes! Use the weights $x_{1}=-1$ and $x_{2}=-9$:

$$
(-1)\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)+(-9)\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

Poll 1, also answer the matrix poll

Section 1.4

The Matrix Equation $A x=b$

Today: Spans and Solutions to Equations

Let $\mathbf{b} \in \mathbf{R}^{n}$ and A be a matrix with columns $v_{1}, v_{2}, \ldots, v_{n} \in \mathbf{R}^{n}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Very Important Fact
$A x=b$ has a solution
"if and only if"
$\Longleftrightarrow b$ is in the span of the columns of A.

Matrix \times Vector

Let A be an $\stackrel{m}{m} \times \stackrel{n}{n}$ matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

$$
\text { with columns } v_{1}, v_{2}, \ldots, v_{n}
$$

Definition

The product of A with a vector x in \mathbf{R}^{n} is the linear combination

Necessary: Number of columns of A equals number of rows of x.

$$
\begin{aligned}
& \text { The output is a vector in } \mathbf{R}^{m} \text {. }
\end{aligned}
$$

Matrix Equations

An example

Question

Let v_{1}, v_{2}, v_{3} be vectors in \mathbf{R}^{3}. How can you write the vector equation

$$
2 v_{1}+3 v_{2}-4 v_{3}=\left(\begin{array}{l}
7 \\
2 \\
1
\end{array}\right)
$$

in terms of matrix multiplication?

Matrix \times Vector

Another way

Definition

A row vector is a matrix with one row. The product of a row vector of length n and a (column) vector of length n is a scalar!

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \stackrel{\text { def }}{=} a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

If A is an $m \times n$ matrix with rows $r_{1}, r_{2}, \ldots, r_{m}$, and x is a vector in \mathbb{R}^{n}, then

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
-r_{2}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
r_{2} x \\
\vdots \\
r_{m} x
\end{array}\right)
$$

This is a vector in R^{m}.

Matrix \times Vector

Example

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=
$$

Note this is the same as before:

Now you have two ways of computing $A x$.
In the second, you calculate $A x$ one entry at a time.
Both are convenient, so we'll use both.

Spans and Solutions to Equations

Example 1

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Output vector:

$$
b=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ?

Spans and Solutions to Equations

Example 1, explained

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
Answer: Let's check by solving the matrix equation using row reduction.
The first step is to put the system into an augmented matrix.

$$
\left(\begin{array}{rr|r}
2 & 1 & 0 \\
-1 & 0 & 2 \\
1 & -1 & 2
\end{array}\right) \stackrel{\text { row reduce }}{\text { ~mmum }}\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The last equation is $0=1$, so the system is inconsistent.
In other words, the matrix equation

$$
\left(\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right) x=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

has no solution.

Spans and Solutions to Equations

Example 2

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?
Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Solution vector:

$$
b=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ?

Spans and Solutions to Equations

Example 2, explained

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?
Answer: Let's do this systematically using row reduction.

$$
\left(\begin{array}{rr|r}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 2
\end{array}\right) \underset{\text { row reduce }}{\text { rumun }}\left(\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

This gives us

$$
x=1 \quad y=-1
$$

This is consistent with the picture on the previous slide:

$$
1\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)-1\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \quad \text { or } \quad A\binom{1}{-1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Linear Systems, Vector Equations, Matrix Equations, ...

Now have four equivalent ways of writing linear systems:

1. As a system of equations:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
x_{1}-x_{2}=5
\end{array}
$$

2. As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right)
$$

3. As a vector equation $\left(x_{1} v_{1}+\cdots+x_{n} v_{n}=b\right)$:

$$
x_{1}\binom{2}{1}+x_{2}\binom{3}{-1}=\binom{7}{5}
$$

4. As a matrix equation $(A x=b)$:

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{5}
$$

We will move back and forth freely between these over and over again.

When Solutions Always Exist

Here are criteria for a linear system to always have a solution.

Theorem
Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent

1. $A x=b$ has a solution for all b in \mathbf{R}^{m}.
2. The span of the columns of A is all of \mathbf{R}^{m}.
3. A has a pivot in each row.

Why is (1) the same as (3)?

Look at reduced echelon forms of A.

- If A has a pivot in each row:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right) \quad \begin{gathered}
\text { and }(A \mid b) \\
\text { reduces to: }
\end{gathered} \quad\left(\begin{array}{ccccc|c}
1 & 0 & \star & 0 & \star & \star \\
0 & 1 & \star & 0 & \star & \star \\
0 & 0 & 0 & 1 & \star & \star
\end{array}\right) .
$$

There's no b that makes it inconsistent, so there's always a solution.

- If A doesn't have a pivot in each row:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{gathered}
\text { and this can be } \\
\text { made } \\
\text { inconsistent: }
\end{gathered} \quad\left(\begin{array}{lllll|r}
1 & 0 & \star & 0 & \star & 0 \\
0 & 1 & \star & 0 & \star & 0 \\
0 & 0 & 0 & 0 & 0 & 16
\end{array}\right) .
$$

Section 1.5

Solution Sets of Linear Systems

Plan For Today

Describe and draw the solution set of $A x=b$, using spans.

Recall: the solution set is the collection of all vectors x such that $A x=b$ is true.

Example 1

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 4 \\
2 & -1 & 2 \\
1 & 0 & 1
\end{array}\right) ?
$$

We know how to do this: first form an augmented matrix and row reduce.

The only solution is the trivial solution $x=0$.

Observation

Since the last column (everything to the right of the $=$) was zero to begin, it will always stay zero!

Example 2

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \quad \text { and } \quad b=\binom{-3}{-6} ?
$$

Answer: $\quad x=x_{2}\binom{3}{1}+\binom{-3}{0}$ for any x_{2} in \mathbf{R}.
This is a translate of $\operatorname{Span}\left\{\binom{3}{1}\right\}$: it is the parallel line through $p=\binom{-3}{0}$.

It can be written

$$
\operatorname{Span}\left\{\binom{3}{1}\right\}+\binom{-3}{0}
$$

Example 2, explained

Question

What is the solution set of $A x=b$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \quad \text { and } \quad b=\binom{-3}{-6} \text { ? } \\
& \left(\begin{array}{ll|l}
1 & -3 & -3 \\
2 & -6 & -6
\end{array}\right) \quad \text { row reduce } \quad\left(\begin{array}{rr|r}
1 & -3 & -3 \\
0 & 0 & 0
\end{array}\right) \\
& \text { equation } \\
& \text { munn } \rightarrow x_{1}-3 x_{2}=-3 \\
& \underset{\text { parametric form }}{\text { pmmmmum }} \rightarrow\left\{\begin{array}{l}
x_{1}=3 x_{2}-3 \\
x_{2}=x_{2}+0
\end{array}\right. \\
& \underset{\text { parametric vector form }}{\text { pmmmmummmun }} \boldsymbol{x}=\binom{x_{1}}{x_{2}}=x_{2}\binom{3}{1}+\binom{-3}{0} \text {. }
\end{aligned}
$$

Note that p is itself a solution: take $x_{2}=0$.

Example 3

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) ?
$$

Answer: $x=x_{2}\binom{3}{1}$ for any x_{2} in \mathbf{R}. The solution set is $\operatorname{Span}\left\{\binom{3}{1}\right\}$.

Note: one free variable means the solution set is a line in $\mathbf{R}^{2}(2=\#$ variables = \# columns).

Example 3, explained

Question

What is the solution set of $A x=0$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & -3 \\
2 & -6
\end{array}\right) \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\text { parametric form }} \underset{\text { mammmmm }}{ } \underset{x_{1}=3 x_{2}}{x_{2}=x_{2}} \\
& \underset{\sim}{\text { parametric vector form }} \underset{\text { mmmmmmman }}{ } \quad x=\binom{x_{1}}{x_{2}}=x_{2}\binom{3}{1} \text {. }
\end{aligned}
$$

Parametric vector forms

The three examples

These equations are called the parametric vector form of the solutions.
It is obtained by listing equations for all the variables, in order, including the free ones, and making a vector equation.

Parametric Vector Form and Span

Let A be an $m \times n$ matrix. If the free variables in the equation $A x=b$ are $x_{i}, x_{j}, x_{k}, \ldots$

And the parametric vector form of the solution is

$$
x=b^{\prime}+x_{i} v_{i}+x_{j} v_{j}+x_{k} v_{k}+\cdots
$$

for some vectors $b^{\prime}, v_{i}, v_{j}, v_{k}, \ldots$ in \mathbf{R}^{n}, and any scalars $x_{i}, x_{j}, x_{k}, \ldots$
Then the solution set is

$$
b^{\prime}+\operatorname{Span}\left\{v_{i}, v_{j}, v_{k}, \ldots\right\}
$$

Parametric Vector form

Example 4

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}8 \\ -4 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}7 \\ -3 \\ 0 \\ 1\end{array}\right)\right\}$.

[not pictured here]

Note: two free variables means the solution set is a plane in $\mathbf{R}^{4}(4=\#$ variables $=\#$ columns).

Parametric vector form

Example 4, explained

Question

What is the solution set of $A x=0$, where $A=$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) \quad \text { row reduce } \quad\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \underset{\text { muman }}{\text { equations }}\left\{\left\{\begin{array}{rl}
x_{1} & -8 x_{3}-7 x_{4}
\end{array}=0\right.\right. \\
& \underset{\text { parametric form }}{\text { mumnumu } \rightarrow}\left\{\begin{aligned}
x_{1}= & 8 x_{3}+7 x_{4} \\
x_{2}= & -4 x_{3}-3 x_{4} \\
x_{3}= & x_{3} \\
x_{4}=r & x_{4}
\end{aligned}\right.
\end{aligned}
$$

Homogeneous Systems

Everything is easier when $b=0$, so we start with this case.

Definition

A system of linear equations of the form $A x=0$ is called homogeneous.
A homogeneous system always has the solution $x=0$. This is called the trivial solution. The nonzero solutions are called nontrivial.

Observation

$$
A x=0 \text { has a nontrivial solution }
$$

\Longleftrightarrow there is a free variable
$\Longleftrightarrow A$ has a column with no pivot.

The opposite:
Definition
A system of linear equations of the form $A x=b$ with $b \neq 0$ is called nonhomogeneous or inhomogeneous.

Solutions for Homogeneous Systems

Let c be a scalar, u, v be vectors, and A a matrix.

- $A(u+v)=A u+A v$
- $A(c v)=c A v$

See Lay, §1.4, Theorem 5.

Consequence: If u and v are solutions to $A x=0$, then so is every vector in Span $\{u, v\}$. Why?

Important
The set of solutions to $A x=0$ is a span.

Solutions for Consistent Nonhomogeneous Systems

When consistent

The set of solutions to $A x=b$, is parallel to a span.

Why? solutions are obtained by taking one specific or particular solution p to $A x=b$, and adding all solutions to $A x=0$.

If $A p=b$ and $A x=0$, then

Note:
Works for any specific solution p: it doesn't matter how one found it!

Reverse Engineering: Nonhomogeneous System

Question

Give a system whose solution set passes through point p and it is parallel to the solution set of $A x=0$.

1. Set $b=A p$.

Entries in p are the weights that produce b as a linear combination of columns of A.
2. Now p is a specific solution to $A x=b$,
3. so $A x=b$ is the system we wanted.

Take out: If we describe the solution set of $A x=0$, then we can describe the solution set of $A x=b$ for $a l l b$ in the Span of columns of A.

Extra: An homogeneous System

Example 5

Question

What is the solution set of $A x=0$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\}$.

Note: one free variable means the solution set is a line in $\mathbf{R}^{3}(3=\#$ variables $=\#$ columns).

Extra: An homogeneous System

Example 5, explained

Question

What is the solution set of $A x=0$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) ? \\
& \left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \xrightarrow{\text { row reduce }} \underset{\sim m m a n}{\text { rnm }}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \underset{\text { equations }}{\text { equm } \rightarrow}\left\{\begin{array}{rl}
x_{1} & -2 x_{3}
\end{array}=0\right. \\
& \underset{\text { parametric form }}{\sim m u m n u m u ~}\left\{\begin{array}{l}
x_{1}=2 x_{3} \\
x_{2}=-x_{3} \\
x_{3}=x_{3}
\end{array}\right. \\
& \underset{\sim}{\text { parametric vector form }} \underset{m_{n}}{\text { munnumunnun }} \rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \text {. }
\end{aligned}
$$

Extra: A Nonhomogeneous System

Example 6

Question

What is the solution set of $A x=b$, where

$$
A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
-5 \\
-3 \\
-2
\end{array}\right) ?
$$

Answer: $\operatorname{Span}\left\{\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right\}+\left(\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right)$.

The solution set is a translate of

$$
\operatorname{Span}\left\{\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right\}
$$

it is the parallel line through

$$
p=\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right) .
$$

Extra: A Nonhomogeneous System

Example 6, explained

Question

What is the solution set of $A x=b$, where

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
1 & 0 & -2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
-5 \\
-3 \\
-2
\end{array}\right) \text { ? } \\
& \left(\begin{array}{rrr|r}
1 & 3 & 1 & -5 \\
2 & -1 & -5 & -3 \\
1 & 0 & -2 & -2
\end{array}\right) \quad \stackrel{\text { row reduce }}{\text { rumani }}\left(\begin{array}{rrr|r}
1 & 0 & -2 & -2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\text { parametric form }} \underset{\sim}{\text { mamminm }} \rightarrow \begin{array}{l}
x_{1}=2 x_{3}-2 \\
x_{2}=-x_{3}-1 \\
x_{3}=x_{3}
\end{array} \\
& \underset{\sim}{\text { parametric vector form }} \underset{\text { manmannum }}{\text { min }} \quad x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)+\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right) \text {. }
\end{aligned}
$$

