Announcements

Wednesday, September 13

- Verify that participation points are being registered in T-square
- On quizzes and Exams:
- Justify your answer means you have to write down an argument explaining why and how you get the solution.
- Midterm topics: Section 1.1-1.5
- Webwork for this and next week, same as before
- Review session on class cancelled.
- Might be possible to arrange a special session either the 20th or 21st.

When a vector is a linear combinations of...

Review

Is $\left(\begin{array}{c}8 \\ 16 \\ 3\end{array}\right)$ a linear combination of $\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}-1 \\ -2 \\ -1\end{array}\right)$?

$$
\begin{array}{rcr|r}
x_{1}-x_{2}=8 \\
2 x_{1}-2 x_{2}=16 \\
6 x_{1}-x_{2}=3
\end{array} \quad \begin{array}{cc|r}
\text { matrix form } \\
\text { munnum } \rightarrow
\end{array} \quad\left(\begin{array}{ll|r}
1 & -1 & 8 \\
2 & -2 & 16 \\
6 & -1 & 3
\end{array}\right)
$$

Conclusion:
Yes! Use the weights $x_{1}=-1$ and $x_{2}=-9$:

$$
(-1)\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)+(-9)\left(\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
16 \\
3
\end{array}\right)
$$

Poll 1, also answer the matrix poll

Poll
You have only 20 seconds before the quiz is over. There is no time to perform row reduction. Quick! select your best guesses:
The vector $\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$ is in the span of
A. $\left(\begin{array}{c}0 \\ 10 \\ 20\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ -2\end{array}\right)$.
B. $\left(\begin{array}{l}1 \\ 5 \\ 7\end{array}\right),\left(\begin{array}{l}0 \\ 6 \\ 8\end{array}\right)$.
C. $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ \sqrt{2}\end{array}\right)$.
D. $\left(\begin{array}{l}6 \\ 8 \\ 0\end{array}\right),\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$.

Section 1.4

The Matrix Equation $A x=b$

Today: Spans and Solutions to Equations

Let $\mathbf{b} \in \mathbf{R}^{n}$ and A be a matrix with columns $v_{1}, v_{2}, \ldots, v_{n} \in \mathbf{R}^{n}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Very Important Fact That Will Appear on Every Midterm and the Final
$A x=b$ has a solution
"if and only if"
$\Longleftrightarrow b$ is in the span of the columns of A.

The last condition is geometric.

Matrix \times Vector

Let A be an $\stackrel{m}{m} \times \stackrel{n}{n}$ matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

$$
\text { with columns } v_{1}, v_{2}, \ldots, v_{n}
$$

Definition

The product of A with a vector x in \mathbf{R}^{n} is the linear combination

Necessary: Number of columns of A equals number of rows of x.

$$
\begin{aligned}
& \text { The output is a vector in } \mathbf{R}^{m} \text {. }
\end{aligned}
$$

Matrix Equations

An example

Question

Let v_{1}, v_{2}, v_{3} be vectors in \mathbf{R}^{3}. How can you write the vector equation

$$
2 v_{1}+3 v_{2}-4 v_{3}=\left(\begin{array}{l}
7 \\
2 \\
1
\end{array}\right)
$$

in terms of matrix multiplication?
Answer: Let A be the matrix with colums v_{1}, v_{2}, v_{3}, and let x be the vector with entries $2,3,-4$. Then

$$
A x=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)=2 v_{1}+3 v_{2}-4 v_{3}
$$

so the vector equation is equivalent to the matrix equation

$$
A x=\left(\begin{array}{l}
7 \\
2 \\
1
\end{array}\right)
$$

Matrix \times Vector

Another way

Definition

A row vector is a matrix with one row. The product of a row vector of length n and a (column) vector of length n is a scalar!

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \stackrel{\text { def }}{=} a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

If A is an $m \times n$ matrix with rows $r_{1}, r_{2}, \ldots, r_{m}$, and x is a vector in \mathbb{R}^{n}, then

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
-r_{2}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
r_{2} x \\
\vdots \\
r_{m} x
\end{array}\right)
$$

This is a vector in R^{m}.

Matrix \times Vector

Both ways

Example

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\binom{(456)\left(\begin{array}{c}
1 \\
2 \\
3
\end{array}\right)}{(789)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)}=\binom{4 \cdot 1+5 \cdot 2+6 \cdot 3}{7 \cdot 1+8 \cdot 2+9 \cdot 3}=\binom{32}{50} .
$$

Note this is the same as before:

$$
\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1\binom{4}{7}+2\binom{5}{8}+3\binom{6}{9}=\binom{1 \cdot 4+2 \cdot 5+3 \cdot 6}{1 \cdot 7+2 \cdot 8+3 \cdot 9}=\binom{32}{50}
$$

Now you have two ways of computing $A x$.
In the second, you calculate $A x$ one entry at a time.
Both are convenient, so we'll use both.

Spans and Solutions to Equations

Example 1

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Output vector:

$$
b=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ?
Conclusion: $A x=b$ is inconsistent.

Spans and Solutions to Equations

Example 1, explained

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)$ have a solution?
Answer: Let's check by solving the matrix equation using row reduction.
The first step is to put the system into an augmented matrix.

$$
\left(\begin{array}{rr|r}
2 & 1 & 0 \\
-1 & 0 & 2 \\
1 & -1 & 2
\end{array}\right) \stackrel{\text { row reduce }}{\text { ~mmum }}\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The last equation is $0=1$, so the system is inconsistent.
In other words, the matrix equation

$$
\left(\begin{array}{rr}
2 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right) x=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
$$

has no solution.

Spans and Solutions to Equations

Example 2

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?
Columns of A :

$$
v=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad w=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

Solution vector:

$$
b=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Is b contained in the span of the columns of A ? It looks like it: in fact,

$$
b=1 v+(-1) w \Longrightarrow x=\binom{1}{-1}
$$

Spans and Solutions to Equations

Example 2, explained

Question
Let $A=\left(\begin{array}{rr}2 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$. Does the equation $A x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ have a solution?
Answer: Let's do this systematically using row reduction.

$$
\left(\begin{array}{rr|r}
2 & 1 & 1 \\
-1 & 0 & -1 \\
1 & -1 & 2
\end{array}\right) \underset{\text { row reduce }}{\text { rumun }}\left(\begin{array}{rr|r}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

This gives us

$$
x=1 \quad y=-1
$$

This is consistent with the picture on the previous slide:

$$
1\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)-1\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right) \quad \text { or } \quad A\binom{1}{-1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

Linear Systems, Vector Equations, Matrix Equations, ...

Now have four equivalent ways of writing linear systems:

1. As a system of equations:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}=7 \\
x_{1}-x_{2}=5
\end{array}
$$

2. As an augmented matrix:

$$
\left(\begin{array}{rr|r}
2 & 3 & 7 \\
1 & -1 & 5
\end{array}\right)
$$

3. As a vector equation $\left(x_{1} v_{1}+\cdots+x_{n} v_{n}=b\right)$:

$$
x_{1}\binom{2}{1}+x_{2}\binom{3}{-1}=\binom{7}{5}
$$

4. As a matrix equation $(A x=b)$:

$$
\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{5}
$$

We will move back and forth freely between these over and over again.

When Solutions Always Exist

Here are criteria for a linear system to always have a solution.

Theorem
Let A be an $m \times n$ (non-augmented) matrix. The following are equivalent

1. $A x=b$ has a solution for all b in \mathbf{R}^{m}.
2. The span of the columns of A is all of \mathbf{R}^{m}.
3. A has a pivot in each row.

Why is (1) the same as (3)?

Look at reduced echelon forms of A.

- If A has a pivot in each row:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 1 & \star
\end{array}\right) \quad \begin{gathered}
\text { and }(A \mid b) \\
\text { reduces to: }
\end{gathered} \quad\left(\begin{array}{ccccc|c}
1 & 0 & \star & 0 & \star & \star \\
0 & 1 & \star & 0 & \star & \star \\
0 & 0 & 0 & 1 & \star & \star
\end{array}\right) .
$$

There's no b that makes it inconsistent, so there's always a solution.

- If A doesn't have a pivot in each row:

$$
\left(\begin{array}{ccccc}
1 & 0 & \star & 0 & \star \\
0 & 1 & \star & 0 & \star \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{gathered}
\text { and this can be } \\
\text { made } \\
\text { inconsistent: }
\end{gathered} \quad\left(\begin{array}{lllll|r}
1 & 0 & \star & 0 & \star & 0 \\
0 & 1 & \star & 0 & \star & 0 \\
0 & 0 & 0 & 0 & 0 & 16
\end{array}\right) .
$$

