
Announcements
Wednesday, September 20

I Quiz 3: Come forward to pick up your exam

How do you feel today?
It is anonymous and you may choose not to answer all questions

Poll

I First time I was away of home: Masters in Montreal
I Life on campus was too expensive for me
I I couldn’t find people that I felt comfortable with (cultural clash)
I School was ok, though I only took two courses
I I didn’t know how to ask my family for more attention

I Don’t hesitate to use the resources on campus



Section 1.7

Linear Independence



Motivation

Sometimes the span of a set of vectors “is smaller” than you expect from the
number of vectors.

Span{v ,w}

v

w

Span{u, v ,w}

v

w

u

This “means” you don’t need so many vectors to express the same set of
vectors.

Notice in each case that one vector in the set is already in the span of the
others—so it doesn’t make the span bigger.

Today we will formalize this idea in the concept of linear (in)dependence.



Linear Independence

Definition
A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · · = xp = 0.

The opposite:

The set {v1, v2, . . . , vp} is linearly dependent if there exist numbers
x1, x2, . . . , xp, not all equal to zero, such that

x1v1 + x2v2 + · · ·+ xpvp = 0.

This is called a linear dependence relation.

Like span, linear (in)dependence is another one of those big vocabulary
words that you absolutely need to learn. Much of the rest of the course
will be built on these concepts, and you need to know exactly what they
mean in order to be able to answer questions on quizzes and exams (and
solve real-world problems later on).



Linear Independence

Definition
A set of vectors {v1, v2, . . . , vp} in Rn is linearly independent if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution x1 = x2 = · · · = xp = 0. The set {v1, v2, . . . , vp} is
linearly dependent otherwise.

The notion of linear (in)dependence applies to a collec-
tion of vectors, not to a single vector, or to one vector
in the presence of some others.



Checking Linear Independence

Question: Is


1

1
1

 ,

 1
−1
2

 ,

3
1
4

 linearly independent?

Equivalently, does the (homogeneous) the vector equation

x

1
1
1

+ y

 1
−1
2

+ z

3
1
4

 =

0
0
0


have a nontrivial solution? How do we solve this kind of vector equation? 1 1 3

1 −1 1
1 2 4

 row reduce

 1 0 2
0 1 1
0 0 0


So x = −2z and y = −z . So the vectors are linearly dependent, and an
equation of linear dependence is (taking z = 1)

−2
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1
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−
 1
−1
2

+

3
1
4

 =

0
0
0

 .
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−1
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+ z
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1
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0
0
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
have a nontrivial solution? 1 1 3

1 −1 1
0 2 4

 row reduce

 1 0 0
0 1 0
0 0 1



The trivial solution

x
y
z

 =

0
0
0

 is the unique solution. So the vectors are

linearly independent.



Linear Independence and Matrix Columns

By definition, {v1, v2, . . . , vp} is linearly independent if and only if the vector
equation

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution. This holds if and only if the matrix equation

Ax = 0

has only the trivial solution, where A is the matrix with columns v1, v2, . . . , vp:

A =

 | | |
v1 v2 · · · vp
| | |

 .

This is true if and only if the matrix A has a pivot in each column.

I The vectors v1, v2, . . . , vp are linearly independent if and only if the
matrix with columns v1, v2, . . . , vp has a pivot in each column.

I Solving the matrix equation Ax = 0 will either verify that the
columns v1, v2, . . . , vp of A are linearly independent, or will
produce a linear dependence relation.

Important



Linear Dependence
Criterion

If one of the vectors {v1, v2, . . . , vp} is a linear combination of the other ones:

v3 = 2v1 −
1

2
v2 + 6v4

Then the vectors are linearly dependent:

2v1 −
1

2
v2 − v3 + 6v4 = 0.

Conversely, if the vectors are linearly dependent

2v1 −
1

2
v2 + 6v4 = 0,

then one vector is a linear combination of the other ones:

v2 = 4v1 + 12v4.

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if one of the
vectors is in the span of the other ones.



Linear Independence
Pictures in R2

Span{v}

v

In this picture

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , u}:
Linearly dependent: u is in
Span{v ,w}.

Also
v is in Span{u,w} and
w is in Span{u, v}.
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Pictures in R2
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Linear Independence
Pictures in R2
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In this picture

One vector {v}:
Linearly independent if v 6= 0.

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , u}:
Linearly dependent: u is in
Span{v ,w}.

Also
v is in Span{u,w} and
w is in Span{u, v}.



Linear Independence
Pictures in R2

Span{v}

v

w

Two collinear vectors {v ,w}:
Linearly dependent: w is in
Span{v} (and vice-versa).

I Two vectors are linearly
dependent if and only if
they are collinear.

Three vectors {v ,w , u}:
Linearly dependent: w is in
Span{v} (and vice-versa).

I If a set of vectors is linearly
dependent, then so is any
larger set of vectors!



Linear Independence
Pictures in R2
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w
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Two collinear vectors {v ,w}:
Linearly dependent: w is in
Span{v} (and vice-versa).

I Two vectors are linearly
dependent if and only if
they are collinear.

Three vectors {v ,w , u}:
Linearly dependent: w is in
Span{v} (and vice-versa).

I If a set of vectors is linearly
dependent, then so is any
larger set of vectors!



Linear Independence
Pictures in R3

v

w

u

Span{v}

Span{w}

Span{v ,w}
In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , u}:
Linearly independent: no one is
in the span of the other two.



Linear Independence
Pictures in R3

v

w

Span{v}

Span{w}

In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , x}:
Linearly dependent: x is in
Span{v ,w}.



Linear Independence
Pictures in R3

v

w

Span{v}

Span{w}

In this picture

Two vectors {v ,w}:
Linearly independent: neither is
in the span of the other.

Three vectors {v ,w , x}:
Linearly dependent: x is in
Span{v ,w}.



Which subsets are linearly dependent?

Are there four vectors u, v ,w , x in R3 which are linearly depen-
dent, but such that u is not a linear combination of v ,w , x?
If so, draw a picture; if not, give an argument.

Think about

Yes: actually the pictures on the previous slides provide such an example.

Linear dependence of {v1, . . . , vp} means some vi is a linear combination of
the others, not any.



Linear Dependence
Stronger criterion

Suppose a set of vectors {v1, v2, . . . , vp} is linearly dependent.

Take the largest j such that vj is in the span of the others.

Is vj is in the span of v1, v2, . . . , vj−1?

For example, j = 3 and

v3 = 2v1 −
1

2
v2 + 6v4

Rearrange:

v4 = −1

6

(
2v1 −

1

2
v2 − v3

)
so v4 is also in the span of v1, v2, v3, but v3 was supposed to be the last one
that was in the span of the others.

Better Theorem
A set of vectors {v1, v2, . . . , vp} is linearly dependent if and only if there is
some j such that vj is in Span{v1, v2, . . . , vj−1}.



Linear Independence
Increasing span criterion

If the vector vj is not in Span{v1, v2, . . . , vj−1},

it means Span{v1, v2, . . . , vj} is bigger than Span{v1, v2, . . . , vj−1}.

A set of vectors is linearly independent if and only if,
every time you add another vector to the set, the span
gets bigger.

If true for all j

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.



Linear Independence
Increasing span criterion: pictures

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.

v

Span{v}

One vector {v}:
Linearly independent: span got
bigger (than {0}).

Two vectors {v ,w}:
Linearly independent: span got
bigger.
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Theorem
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Linear Independence
Increasing span criterion: pictures

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.

v

w

u

Span{v}

Span{v ,w}

Span{v ,w , u}

One vector {v}:
Linearly independent: span got
bigger (than {0}).

Two vectors {v ,w}:
Linearly independent: span got
bigger.

Three vectors {v ,w , u}:
Linearly independent: span got
bigger.



Linear Independence
Increasing span criterion: pictures

Theorem
A set of vectors {v1, v2, . . . , vp} is linearly independent if and only if, for every
j , the span of v1, v2, . . . , vj is strictly larger than the span of v1, v2, . . . , vj−1.

v

w

x

Span{v}

Span{v ,w , x}
One vector {v}:
Linearly independent: span got
bigger (than {0}).

Two vectors {v ,w}:
Linearly independent: span got
bigger.

Three vectors {v ,w , x}:
Linearly dependent: span didn’t
get bigger.



Extra: Linear Independence
Two more facts

Fact 1: Say v1, v2, . . . , vn are in Rm. If n > m then {v1, v2, . . . , vn} is linearly
dependent:

the matrix

A =

 | | |
v1 v2 · · · vn
| | |

 .

cannot have a pivot in each column (it is too wide).

This says you can’t have 4 linearly independent vectors in R3, for instance.

A wide matrix can’t have linearly independent columns.

Fact 2: If one of v1, v2, . . . , vn is zero, then {v1, v2, . . . , vn} is linearly
dependent.

For instance, if v1 = 0, then

1 · v1 + 0 · v2 + 0 · v3 + · · ·+ 0 · vn = 0

is a linear dependence relation.

A set containing the zero vector is linearly dependent.



Section 1.8

Introduction to Linear Transformations



Motivation

Let A be an m × n matrix. For Ax = b we can describe

I the solution set: all x in Rn making the equation true.

I the column span: the set of all b in Rm making the equation consistent.

It turns out these two sets are very closely related to each other.

Geometry matrices: linear transformation from Rn to Rm.

T

A B C



Transformations

Definition
A transformation (or function or map) from Rn to Rm is a rule T that assigns
to each vector x in Rn a vector T (x) in Rm.

I Rn is called the domain of T (the inputs).

I Rm is called the codomain of T (the outputs).

I For x in Rn, the vector T (x) in Rm is the image of x under T .
Notation: x 7→ T (x).

I The set of all images {T (x) | x in Rn} is the range of T .

Notation:

T : Rn −→ Rm means T is a transformation from Rn to Rm.

Rn Rm

domain codomain

T

x
T (x) range

T

Think of T as a “machine”

I takes x as an input

I gives you T (x) as the
output.



Functions from Calculus

Many of the functions you know have domain and codomain R.

For example, f : R −→ R f (x) = x2

Often times we omit the name f (x) of the function “x2”.

You may be used to thinking of a function in terms of its graph. E.g.,

x

(x , sin x) The horizontal axis is the domain, and
the vertical axis is the codomain.

This is fine when the domain and
codomain are R, but it’s hard to do
when they’re R2 and R3!

You need
five dimensions to draw that graph.



Matrix Transformations

Definition
Let A be an m × n matrix. The matrix transformation associated to A is the
transformation

T : Rn −→ Rm defined by T (x) = Ax .

In other words, T takes the vector x in Rn to the vector Ax in Rm.

I The domain of T is Rn, which is the number of columns of A.

I The codomain of T is Rm, which is the number of rows of A.

I The range of T is the set of all images of T :

T (x) = Ax =

 | | |
v1 v2 · · · vn
| | |



x1

x2

...
xn

 = x1v1 + x2v2 + · · ·+ xnvn.

This is the column span of A. It is a span of vectors in the codomain.
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Matrix Transformations
Example

Let A =

 1 1
0 1
1 1

 and let T (x) = Ax , so T : R2 → R3.

I If u =

(
3
4

)
then T (u) =

 1 1
0 1
1 1

(3
4

)
=

7
4
7

 .

I Let b =

7
5
7

. Find v in R2 such that T (v) = b. Is there more than one?

We want to find v such that T (v) = Av = b. We know how to do that: 1 1
0 1
1 1

 v =

7
5
7

 augmented
matrix

 1 1 7
0 1 5
1 1 7

 row
reduce

 1 0 2
0 1 5
0 0 0

 .

This gives x = 2 and y = 5, or v =

(
2
5

)
(unique). In other words,

T (v) =

 1 1
0 1
1 1

(2
5

)
=

7
5
7

 .



Matrix Transformations
Example, continued

Let A =

 1 1
0 1
1 1

 and let T (x) = Ax , so T : R2 → R3.

I Is there any c in R3 such that there is more than one v in R2 with
T (v) = c?

Translation: is there any c in R3 such that the solution set of Ax = c has
more than one vector v in it?

The solution set of Ax = c is a translate of the solution set of Ax = b
(from before), which has one vector in it.
So the solution set to Ax = c has only one vector.
So no!

I Find c such that there is no v with T (v) = c.

Translation: Find c such that Ax = c is inconsistent.

In other words, find c not in the column span of A (i.e., the range of T ).

We could draw a picture, or notice: a

1
0
1

+ b

1
1
1

 =

a + b
b

a + b

.

Anything in the column span has the same first and last coordinate.

So c =
(

1
2
3

)
is not in the column span (for example).



Matrix Transformations
Projection

Let A =

 1 0 0
0 1 0
0 0 0

 and let T (x) = Ax , so T : R3 → R3. Then

T

x
y
z

 =

 1 0 0
0 1 0
0 0 0

x
y
z

 =

x
y
0

 .

This is projection onto the xy-axis. Picture:



Matrix Transformations
Reflection

Let A =

(
−1 0
0 1

)
and let T (x) = Ax , so T : R2 → R2. Then

T

(
x
y

)
=

(
−1 0
0 1

)(
x
y

)
=

(
−x
y

)
.

This is reflection over the y-axis. Picture:

T



Poll

Let A =

(
1 1
0 1

)
and let T (x) = Ax , so T : R2 → R2. (T is called a shear.)

What does T do to this sheep?

Hint: first draw a picture what it does to the box around the
sheep.

Poll

T

A B C

sheared sheep



Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

A(u + v) = Au + Av A(cv) = cAv .

So if T (x) = Ax is a matrix transformation then,

T (u + v) = T (u) + T (v) T (cv) = cT (v).

Definition
A transformation T : Rn → Rm is linear if it satisfies the above equations for all
vectors u, v in Rn and all scalars c.

In other words, T “respects” addition and scalar multiplication.

Check: if T is linear, then

T (0) = 0 T (cu + dv) = cT (u) + dT (v)

for all vectors u, v and scalars c, d .

More generally, (in engineering this is called superposition)

T
(
c1v1 + c2v2 + · · ·+ cnvn

)
= c1T (v1) + c2T (v2) + · · ·+ cnT (vn).



Linear Transformations
Dilation

Define T : R2 → R2 by T (x) = 1.5x . Is T linear?

Check:

T (u + v) =

1.5(u + v) = 1.5u + 1.5v = T (u) + T (v)

T (cv) =

1.5(cv) = c(1.5v) = c(Tv).

So T satisfies the two equations, hence T is linear.

This is called dilation or scaling (by a factor of 1.5). Picture:

T



Linear Transformations
Rotation

Define T : R2 → R2 by T

(
x
y

)
=

(
−y
x

)
. Is T linear?

Check:

T

((
u1

u2

)
+

(
v1

v2

))
=

(
−u2

u1

)
+

(
−v2

v1

)
=

(
−(u2 + v2)
(u1 + v1)

)
= T

(
u1 + u2

v1 + v2

)

T

(
c

(
v1

v2

))
=

T

(
cv1

cv2

)
=

(
−cv2

cv1

)
= c

(
−v2

v1

)
= cT

(
v1

v2

)
.

So T satisfies the two equations, hence T is linear.

This is called rotation (by 90◦). Picture:

T

(
1
2

)
=

(
−2
1

)
T

(
−1
1

)
=

(
−1
−1

)
T

(
0
−2

)
=

(
2
0

)


