## Announcements Wednesday, September 20

Quiz 3: Come forward to pick up your exam

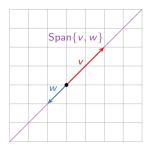
- ▶ First time I was away of home: Masters in Montreal
  - Life on campus was too expensive for me
  - ▶ I couldn't find people that I felt comfortable with (cultural clash)
  - School was ok, though I only took two courses
  - ▶ I didn't know how to ask my family for more attention
- ▶ Don't hesitate to use the resources on campus

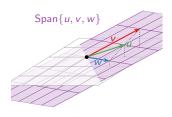
## Section 1.7

Linear Independence

#### Motivation

Sometimes the *span* of a set of vectors *"is smaller"* than you expect from the number of vectors.





This "means" you *don't need so many vectors* to express the same set of vectors.

Today we will formalize this idea in the concept of *linear (in)dependence*.

#### Definition

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  in  $\mathbf{R}^n$  is linearly independent if the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0$$

has only the trivial solution  $x_1 = x_2 = \cdots = x_p = 0$ .

#### The opposite:

The set  $\{v_1, v_2, ..., v_p\}$  is *linearly dependent* if there exist numbers  $x_1, x_2, ..., x_p$ , not all equal to zero, such that

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0.$$

This is called a *linear dependence relation*.

#### Definition

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  in  $\mathbf{R}^n$  is linearly independent if the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0$$

has only the trivial solution  $x_1 = x_2 = \cdots = x_p = 0$ . The set  $\{v_1, v_2, \dots, v_p\}$  is **linearly dependent** otherwise.

The notion of linear (in)dependence *applies to a collection of vectors*, not to a single vector, or to one vector in the presence of some others.

## Checking Linear Independence

Question: Is 
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 3\\1\\4 \end{pmatrix} \right\}$$
 linearly independent?

## Checking Linear Independence

Question: Is 
$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 3\\1\\4 \end{pmatrix} \right\}$$
 linearly independent?

## Linear Independence and Matrix Columns

By definition,  $\{v_1, v_2, \dots, v_p\}$  is *linearly independent* if and only if the vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0$$

has only the trivial solution. This holds *if and only if* the matrix equation

$$Ax = 0$$

has only the trivial solution, where A is the matrix with columns  $v_1, v_2, \ldots, v_p$ :

$$A = \left(\begin{array}{cccc} | & | & & | \\ v_1 & v_2 & \cdots & v_p \\ | & | & & | \end{array}\right).$$

This is true if and only if the matrix A has a pivot in each column.

## Linear Dependence

If one of the vectors  $\{v_1, v_2, \dots, v_p\}$  is a linear combination of the other ones:

$$v_3 = 2v_1 - \frac{1}{2}v_2 + 6v_4$$

Then the vectors are linearly dependent:

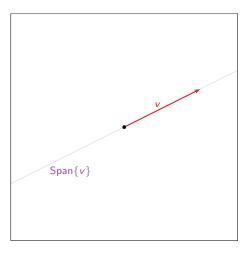
Conversely, if the vectors are linearly dependent

$$2v_1 - \frac{1}{2}v_2 + 6v_4 = 0,$$

#### **Theorem**

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly dependent** if and only if *one* of the vectors is *in the span of the other* ones.

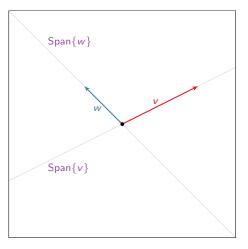
# Linear Independence Pictures in R<sup>2</sup>



## In this picture

One vector  $\{v\}$ : Linearly independent **if**  $v \neq 0$ .

# Linear Independence Pictures in R<sup>2</sup>

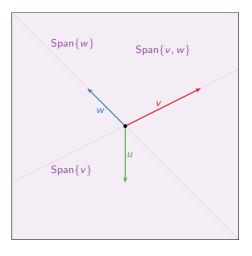


### In this picture

One vector  $\{v\}$ : Linearly independent **if**  $v \neq 0$ .

Two vectors  $\{v, w\}$ :

Linearly independent: neither is in the span of the other.



### In this picture

One vector  $\{v\}$ : Linearly independent **if**  $v \neq 0$ .

### Two vectors $\{v, w\}$ :

Linearly independent: neither is in the span of the other.

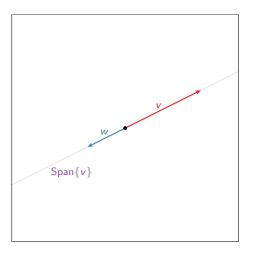
### Three vectors $\{v, w, u\}$ : Linearly dependent: u is in

Span $\{v, w\}$ .

#### Also

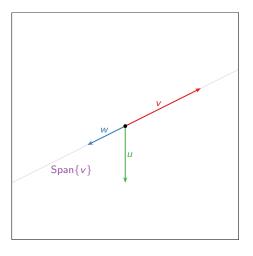
v is in Span $\{u, w\}$  and w is in Span $\{u, v\}$ .

# Linear Independence Pictures in R<sup>2</sup>



Two collinear vectors  $\{v, w\}$ : Linearly dependent: w is in Span $\{v\}$  (and vice-versa).

► Two vectors are linearly dependent if and only if they are collinear.

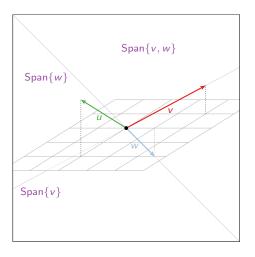


Two collinear vectors  $\{v, w\}$ : Linearly dependent: w is in Span $\{v\}$  (and vice-versa).

Two vectors are linearly dependent if and only if they are collinear.

Three vectors  $\{v, w, u\}$ : Linearly dependent: w is in Span $\{v\}$  (and vice-versa).

► If a set of vectors is linearly dependent, then so is any larger set of vectors!



## In this picture

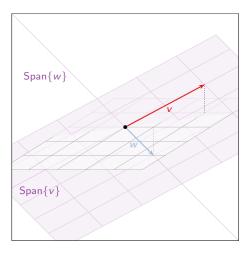
### Two vectors $\{v, w\}$ :

Linearly independent: neither is in the span of the other.

## Three vectors $\{v, w, u\}$ :

Linearly independent: no one is in the span of the other two.

# Linear Independence Pictures in R<sup>3</sup>



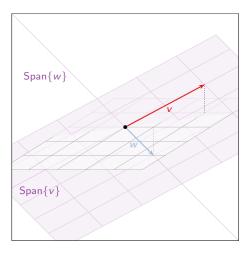
### In this picture

Two vectors  $\{v, w\}$ :

Linearly independent: neither is in the span of the other.

Three vectors  $\{v, w, x\}$ : Linearly dependent: x is in Span $\{v, w\}$ .

# Linear Independence Pictures in R<sup>3</sup>



### In this picture

Two vectors  $\{v, w\}$ :

Linearly independent: neither is in the span of the other.

Three vectors  $\{v, w, x\}$ : Linearly dependent: x is in Span $\{v, w\}$ .



## Linear Dependence

Stronger criterion

Suppose a set of vectors  $\{v_1, v_2, \dots, v_p\}$  is *linearly dependent*.

Take the **largest** j such that  $v_j$  is in the span of the others.

Is  $v_j$  is in the span of  $v_1, v_2, \ldots, v_{j-1}$ ?

For example, j = 3 and

$$v_3 = 2v_1 - \frac{1}{2}v_2 + 6v_4$$

Rearrange:

#### Better Theorem

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly dependent** if and only if there is some j such that  $v_j$  is in  $\text{Span}\{v_1, v_2, \dots, v_{j-1}\}$ .

Increasing span criterion

```
If the vector v_j is not in \text{Span}\{v_1, v_2, \dots, v_{j-1}\}, it means \text{Span}\{v_1, v_2, \dots, v_j\} is bigger than \text{Span}\{v_1, v_2, \dots, v_{j-1}\}.
```

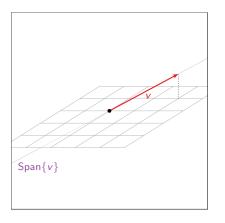
If true for all j

A set of vectors is linearly independent if and only if, every time *you add another vector* to the set, the *span gets bigger*.

Increasing span criterion: pictures

#### **Theorem**

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly independent** if and only if, for every j, the span of  $v_1, v_2, \dots, v_j$  is strictly larger than the span of  $v_1, v_2, \dots, v_{j-1}$ .



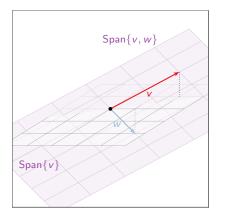
### One vector $\{v\}$ :

Linearly independent: span got bigger (than  $\{0\}$ ).

Increasing span criterion: pictures

#### **Theorem**

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly independent** if and only if, for every j, the span of  $v_1, v_2, \dots, v_j$  is strictly larger than the span of  $v_1, v_2, \dots, v_{j-1}$ .



### One vector $\{v\}$ :

Linearly independent: span got bigger (than  $\{0\}$ ).

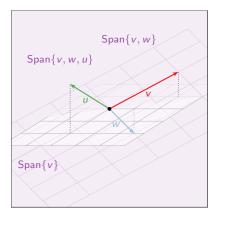
## Two vectors $\{v, w\}$ :

Linearly independent: span got bigger.

Increasing span criterion: pictures

#### **Theorem**

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly independent** if and only if, for every j, the span of  $v_1, v_2, \dots, v_j$  is strictly larger than the span of  $v_1, v_2, \dots, v_{j-1}$ .



#### One vector $\{v\}$ :

Linearly independent: span got bigger (than  $\{0\}$ ).

### Two vectors $\{v, w\}$ :

Linearly independent: span got bigger.

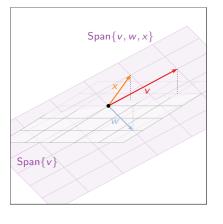
### Three vectors $\{v, w, u\}$ :

Linearly independent: span got bigger.

Increasing span criterion: pictures

#### **Theorem**

A set of vectors  $\{v_1, v_2, \dots, v_p\}$  is **linearly independent** if and only if, for every j, the span of  $v_1, v_2, \dots, v_j$  is strictly larger than the span of  $v_1, v_2, \dots, v_{j-1}$ .



### One vector $\{v\}$ :

Linearly independent: span got bigger (than  $\{0\}$ ).

### Two vectors $\{v, w\}$ :

Linearly independent: span got bigger.

### Three vectors $\{v, w, x\}$ :

Linearly dependent: span didn't get bigger.

## Extra: Linear Independence

Fact 1: Say  $v_1, v_2, ..., v_n$  are in  $\mathbf{R}^m$ . If n > m then  $\{v_1, v_2, ..., v_n\}$  is linearly dependent:

A wide matrix can't have linearly independent columns.

Fact 2: If one of  $v_1, v_2, \ldots, v_n$  is zero, then  $\{v_1, v_2, \ldots, v_n\}$  is linearly dependent.

A set containing the zero vector is linearly dependent.

## Section 1.8

Introduction to Linear Transformations

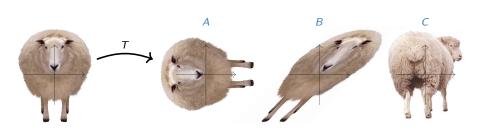
#### Motivation

Let A be an  $m \times n$  matrix. For Ax = b we can describe

- ▶ the solution set: all x in  $\mathbb{R}^n$  making the equation true.
- ▶ the column span: the set of all b in R<sup>m</sup> making the equation consistent.

It turns out these two sets are very closely related to each other.

**Geometry matrices**: *linear transformation* from  $\mathbb{R}^n$  to  $\mathbb{R}^m$ .



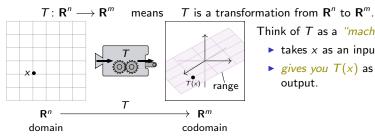
#### **Transformations**

#### Definition

A transformation (or function or map) from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a rule T that assigns to each vector  $\times$  in  $\mathbb{R}^n$  a vector  $T(\times)$  in  $\mathbb{R}^m$ .

- For x in  $\mathbb{R}^n$ , the vector T(x) in  $\mathbb{R}^m$  is the image of x under T. Notation:  $x \mapsto T(x)$ .
- ▶ The set of all images  $\{T(x) \mid x \text{ in } \mathbf{R}^n\}$  is the range of T.

#### Notation:



Think of T as a "machine"

- takes x as an input
- $\triangleright$  gives you T(x) as the output.

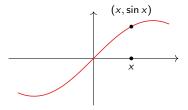
### Functions from Calculus

Many of the functions you know have domain and codomain R.

For example, 
$$f: \mathbf{R} \longrightarrow \mathbf{R}$$
  $f(x) = x^2$ 

Often times we omit the name f(x) of the function " $x^2$ ".

You may be used to thinking of a function in terms of its graph. E.g.,



The horizontal axis is the *domain*, and the vertical axis is the *codomain*.

This is fine when the domain and codomain are R, but it's hard to do when they're  $R^2$  and  $R^3$ !

### Matrix Transformations

#### Definition

Let A be an  $m \times n$  matrix. The matrix transformation associated to A is the transformation

$$T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$$
 defined by  $T(x) = Ax$ .

In other words, T takes the vector x in  $\mathbb{R}^n$  to the vector Ax in  $\mathbb{R}^m$ .

- ▶ The domain of T is  $\mathbb{R}^n$ , which is the number of columns of A.
- ▶ The codomain of T is  $\mathbb{R}^m$ , which is the number of rows of A.
- ► The range of *T* is the set of all images of *T*:

$$T(x) = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the **column span of** A. It is a span of vectors in the codomain.

## Matrix Transformations Example

Let 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T : \mathbb{R}^2 \to \mathbb{R}^3$ .

▶ If 
$$u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 then  $T(u) =$ 

Let 
$$b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$$
. Find  $v$  in  $\mathbb{R}^2$  such that  $T(v) = b$ . Is there more than one?

## Matrix Transformations Example, continued

Let 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T \colon \mathbf{R}^2 \to \mathbf{R}^3$ .

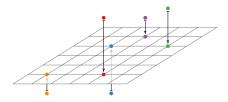
▶ Is there any c in  $\mathbb{R}^3$  such that there is more than one v in  $\mathbb{R}^2$  with T(v) = c?

Find c such that there is no v with T(v) = c.

# Matrix Transformations Projection

Let 
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ . Then 
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

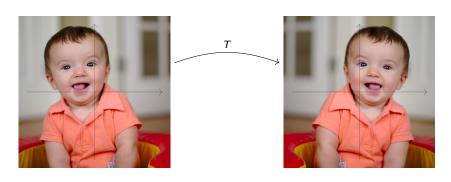
This is *projection onto the xy-axis*. Picture:



## Matrix Transformations Reflection

Let 
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ . Then 
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

This is *reflection over the y-axis*. Picture:



### Poll

Let 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and let  $T(x) = Ax$ , so  $T : \mathbf{R}^2 \to \mathbf{R}^2$ . ( $T$  is called a shear.)

#### Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u+v) = Au + Av$$
  $A(cv) = cAv$ .

So if T(x) = Ax is a matrix transformation then,

$$T(u+v) = T(u) + T(v)$$
  $T(cv) = cT(v)$ .

#### Definition

A transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is **linear** if it satisfies the above equations for *all vectors u, v* in  $\mathbb{R}^n$  and *all scalars c*.

In other words, T "respects" addition and scalar multiplication.

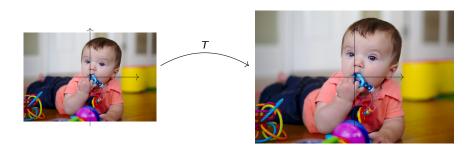
More generally, (in engineering this is called superposition)

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$$

## Linear Transformations Dilation

Define  $T: \mathbf{R}^2 \to \mathbf{R}^2$  by T(x) = 1.5x. Is T linear?

This is called dilation or scaling (by a factor of 1.5). Picture:



## Linear Transformations

Define 
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 by  $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$ . Is  $T$  linear?

This is called **rotation** (by  $90^{\circ}$ ). Picture:

$$T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
$$T \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

