Announcements

- Quiz 3: Come forward to pick up your exam

Poll
How do you feel today?
It is anonymous and you may choose not to answer all questions

- First time I was away of home: Masters in Montreal
- Life on campus was too expensive for me
- I couldn't find people that I felt comfortable with (cultural clash)
- School was ok, though I only took two courses
- I didn't know how to ask my family for more attention
- Don't hesitate to use the resources on campus

Section 1.7

Linear Independence

Motivation

Sometimes the span of a set of vectors "is smaller" than you expect from the number of vectors.

This "means" you don't need so many vectors to express the same set of vectors.
Notice in each case that one vector in the set is already in the span of the others-so it doesn't make the span bigger.
Today we will formalize this idea in the concept of linear (in)dependence.

Linear Independence

Definition

A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly independent if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has only the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$.

The opposite:

The set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent if there exist numbers $x_{1}, x_{2}, \ldots, x_{p}$, not all equal to zero, such that

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

This is called a linear dependence relation.

Like span, linear (in)dependence is another one of those big vocabulary words that you absolutely need to learn. Much of the rest of the course will be built on these concepts, and you need to know exactly what they mean in order to be able to answer questions on quizzes and exams (and solve real-world problems later on).

Linear Independence

Definition

A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ in \mathbf{R}^{n} is linearly independent if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has only the trivial solution $x_{1}=x_{2}=\cdots=x_{p}=0$. The set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent otherwise.

The notion of linear (in)dependence applies to a collection of vectors, not to a single vector, or to one vector in the presence of some others.

Checking Linear Independence

Question: Is $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)\right\}$ linearly independent?
Equivalently, does the (homogeneous) the vector equation

$$
x\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+y\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+z\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

have a nontrivial solution? How do we solve this kind of vector equation?

$$
\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & -1 & 1 \\
1 & 2 & 4
\end{array}\right) \quad \stackrel{\text { row reduce }}{ } \quad\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=-2 z$ and $y=-z$. So the vectors are linearly dependent, and an equation of linear dependence is (taking $z=1$)

$$
-2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Checking Linear Independence

Question: Is $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)\right\}$ linearly independent?
Equivalently, does the (homogeneous) the vector equation

$$
x\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+y\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+z\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

have a nontrivial solution?

$$
\left(\begin{array}{ccc}
1 & 1 & 3 \\
1 & -1 & 1 \\
0 & 2 & 4
\end{array}\right) \xrightarrow{\text { row reduce }} \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The trivial solution $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is the unique solution. So the vectors are linearly independent.

Linear Independence and Matrix Columns

By definition, $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{p} v_{p}=0
$$

has only the trivial solution. This holds if and only if the matrix equation

$$
A x=0
$$

has only the trivial solution, where A is the matrix with columns $v_{1}, v_{2}, \ldots, v_{p}$:

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

This is true if and only if the matrix A has a pivot in each column.

Important

- The vectors $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent if and only if the matrix with columns $v_{1}, v_{2}, \ldots, v_{p}$ has a pivot in each column.
- Solving the matrix equation $A x=0$ will either verify that the columns $v_{1}, v_{2}, \ldots, v_{p}$ of A are linearly independent, or will produce a linear dependence relation.

Linear Dependence

If one of the vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a linear combination of the other ones:

$$
v_{3}=2 v_{1}-\frac{1}{2} v_{2}+6 v_{4}
$$

Then the vectors are linearly dependent:

$$
2 v_{1}-\frac{1}{2} v_{2}-v_{3}+6 v_{4}=0
$$

Conversely, if the vectors are linearly dependent

$$
2 v_{1}-\frac{1}{2} v_{2}+6 v_{4}=0,
$$

then one vector is a linear combination of the other ones:

$$
v_{2}=4 v_{1}+12 v_{4} .
$$

Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent if and only if one of the vectors is in the span of the other ones.

Linear Independence

Pictures in \mathbf{R}^{2}

In this picture

One vector $\{v\}$:
Linearly independent if $v \neq 0$.

Linear Independence

Pictures in \mathbf{R}^{2}

In this picture

One vector $\{v\}$:
Linearly independent if $v \neq 0$.
Two vectors $\{v, w\}$:
Linearly independent: neither is in the span of the other.

Linear Independence

Pictures in \mathbf{R}^{2}

In this picture

One vector $\{v\}$:
Linearly independent if $v \neq 0$.
Two vectors $\{v, w\}$:
Linearly independent: neither is in the span of the other.

Three vectors $\{v, w, u\}$:
Linearly dependent: u is in Span $\{v, w\}$.

Also
v is in $\operatorname{Span}\{u, w\}$ and w is in $\operatorname{Span}\{u, v\}$.

Linear Independence

Pictures in \mathbf{R}^{2}

Two collinear vectors $\{v, w\}$: Linearly dependent: w is in Span $\{v\}$ (and vice-versa).

- Two vectors are linearly dependent if and only if they are collinear.

Linear Independence

Pictures in \mathbf{R}^{2}

Two collinear vectors $\{v, w\}$: Linearly dependent: w is in Span $\{v\}$ (and vice-versa).

- Two vectors are linearly dependent if and only if they are collinear.

Three vectors $\{v, w, u\}$: Linearly dependent: w is in Span\{v\} (and vice-versa).

- If a set of vectors is linearly dependent, then so is any larger set of vectors!

Linear Independence

Pictures in \mathbf{R}^{3}

In this picture

Two vectors $\{v, w\}$:
Linearly independent: neither is in the span of the other.

Three vectors $\{v, w, u\}$:
Linearly independent: no one is in the span of the other two.

Linear Independence

Pictures in \mathbf{R}^{3}

In this picture

Two vectors $\{v, w\}$:
Linearly independent: neither is in the span of the other.

Three vectors $\{v, w, x\}$:
Linearly dependent: x is in Span $\{v, w\}$.

Linear Independence

Pictures in \mathbf{R}^{3}

In this picture

Two vectors $\{v, w\}$:
Linearly independent: neither is in the span of the other.

Three vectors $\{v, w, x\}$:
Linearly dependent: x is in Span $\{v, w\}$.

Which subsets are linearly dependent?

Think about

Are there four vectors u, v, w, x in \mathbf{R}^{3} which are linearly dependent, but such that u is not a linear combination of v, w, x ? If so, draw a picture; if not, give an argument.

Yes: actually the pictures on the previous slides provide such an example.

Linear dependence of $\left\{v_{1}, \ldots, v_{p}\right\}$ means some v_{i} is a linear combination of the others, not any.

Linear Dependence

Suppose a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent.
Take the largest j such that v_{j} is in the span of the others.

$$
\text { Is } v_{j} \text { is in the span of } v_{1}, v_{2}, \ldots, v_{j-1} \text { ? }
$$

For example, $j=3$ and

$$
v_{3}=2 v_{1}-\frac{1}{2} v_{2}+6 v_{4}
$$

Rearrange:

$$
v_{4}=-\frac{1}{6}\left(2 v_{1}-\frac{1}{2} v_{2}-v_{3}\right)
$$

so v_{4} is also in the span of v_{1}, v_{2}, v_{3}, but v_{3} was supposed to be the last one that was in the span of the others.

Better Theorem

A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly dependent if and only if there is some j such that v_{j} is in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$.

Linear Independence

If the vector v_{j} is not in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$,
it means $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ is bigger than $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{j-1}\right\}$.

If true for all j
A set of vectors is linearly independent if and only if, every time you add another vector to the set, the span gets bigger.

Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

Linear Independence

Increasing span criterion: pictures
Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

One vector $\{v\}$:

Linearly independent: span got bigger (than $\{0\}$).

Linear Independence

Increasing span criterion: pictures
Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

One vector $\{v\}$:
Linearly independent: span got bigger (than $\{0\}$).

Two vectors $\{v, w\}$:
Linearly independent: span got bigger.

Linear Independence

Increasing span criterion: pictures
Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

One vector $\{v\}$:

Linearly independent: span got bigger (than $\{0\}$).

Two vectors $\{v, w\}$:
Linearly independent: span got bigger.

Three vectors $\{v, w, u\}$:
Linearly independent: span got bigger.

Linear Independence

Increasing span criterion: pictures
Theorem
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is linearly independent if and only if, for every j, the span of $v_{1}, v_{2}, \ldots, v_{j}$ is strictly larger than the span of $v_{1}, v_{2}, \ldots, v_{j-1}$.

One vector $\{v\}$:

Linearly independent: span got bigger (than $\{0\}$).

Two vectors $\{v, w\}$:
Linearly independent: span got bigger.

Three vectors $\{v, w, x\}$:
Linearly dependent: span didn't get bigger.

Extra: Linear Independence

Fact 1: Say $v_{1}, v_{2}, \ldots, v_{n}$ are in \mathbf{R}^{m}. If $n>m$ then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent: the matrix

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right) .
$$

cannot have a pivot in each column (it is too wide).
This says you can't have 4 linearly independent vectors in \mathbf{R}^{3}, for instance.

A wide matrix can't have linearly independent columns.

Fact 2: If one of $v_{1}, v_{2}, \ldots, v_{n}$ is zero, then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly dependent. For instance, if $v_{1}=0$, then

$$
1 \cdot v_{1}+0 \cdot v_{2}+0 \cdot v_{3}+\cdots+0 \cdot v_{n}=0
$$

is a linear dependence relation.

A set containing the zero vector is linearly dependent.

