Webwork is due by Friday

A set of vectors $\{v_1, v_2, \ldots, v_n\}$ is linearly independent if

 $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ only when $a_1 = a_2 = \dots = a_n = 0$.

Otherwise they are *linearly dependent*, and an a 'witness' equation $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$ with some $a_i \neq 0$ is a linear dependence relation.

Theorem

Let A be the $m \times n$ matrix with column vectors v_1, v_2, \ldots, v_n in \mathbb{R}^m . If the vectors are linearly dependent, a nontrivial solution to the matrix equation

 $A\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix} = 0 \quad \begin{array}{c} \text{gives a linear} \\ \text{dependence relation} \\ x_1v_1 + x_2v_2 + \dots + x_nv_n = 0. \end{array}$

The following are equivalent:

- 1. The set $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- 2. Ax = 0 only has the trivial solution.
- 3. A has a pivot in every column
- 4. For every *i* between 1 and *n*, v_i is not in Span $\{v_1, v_2, \ldots, v_{i-1}\}$.

Section 1.8

Introduction to Linear Transformations

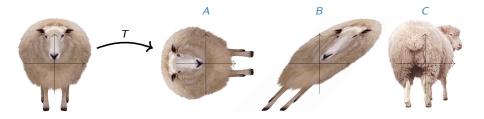
Motivation

Let A be an $m \times n$ matrix. For Ax = b we can describe

- the solution set: all x in \mathbb{R}^n making the equation true.
- the column span: the set of all b in \mathbb{R}^m making the equation consistent.

It turns out these two sets are very closely related to each other.

Geometry matrices: linear transformation from \mathbf{R}^n to \mathbf{R}^m .

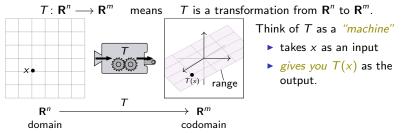


Transformations

Definition

A transformation (or function or map) from \mathbb{R}^n to \mathbb{R}^m is a rule T that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m .

Notation:

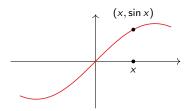


Many of the functions you know have domain and codomain R.

For example,
$$f: \mathbf{R} \longrightarrow \mathbf{R}$$
 $f(x) = x^2$

Often times we omit the name f(x) of the function " x^{2} ".

You may be used to thinking of a function in terms of its graph. E.g.,



The horizontal axis is the *domain*, and the vertical axis is the *codomain*.

This is fine when the domain and codomain are \mathbf{R} , but it's hard to do when they're \mathbf{R}^2 and \mathbf{R}^3 !

Definition

Let A be an $m \times n$ matrix. The matrix transformation associated to A is the transformation

 $T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ defined by T(x) = Ax.

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m .

- The domain of T is \mathbf{R}^n , which is the number of columns of A.
- The codomain of T is \mathbf{R}^m , which is the number of rows of A.
- ▶ The range of *T* is the set of all images of *T*:

$$T(x) = Ax = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

This is the column span of A. It is a span of vectors in the codomain.

Matrix Transformations Example

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^3$.
If $u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ then $T(u) =$
Let $b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$. Find v in \mathbb{R}^2 such that $T(v) = b$. Is there more than one?

Matrix Transformations

Example, continued

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^2 \to \mathbf{R}^3$.

▶ Is there any c in \mathbb{R}^3 such that there is more than one v in \mathbb{R}^2 with T(v) = c?

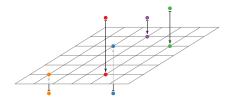
Find c such that there is no v with T(v) = c.

Matrix Transformations

Projection

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^3 \to \mathbf{R}^3$. Then
$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

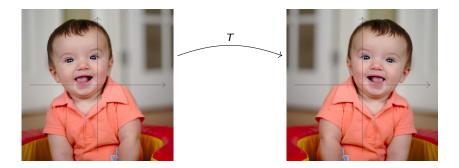
This is *projection onto the xy-axis*. Picture:



Matrix Transformations Reflection

Let
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbf{R}^2 \to \mathbf{R}^2$. Then
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$.

This is *reflection over the y-axis*. Picture:



Poll

Let
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and let $T(x) = Ax$, so $T : \mathbb{R}^2 \to \mathbb{R}^2$. (*T* is called a shear.)

Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then $A(u+v) = Au + Av \qquad A(cv) = cAv.$ So if T(x) = Ax is a matrix transformation then, $T(u+v) = T(u) + T(v) \quad \text{and} \quad T(cu) = cT(u)$

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if it satisfies the above equations for all vectors u, v in \mathbb{R}^n and all scalars c.

In other words, *T* "respects" addition and scalar multiplication.

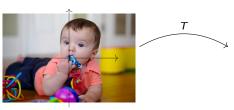
More generally, (in engineering this is called superposition)

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$$

Linear Transformations

Define $T: \mathbf{R}^2 \to \mathbf{R}^2$ by T(x) = 1.5x. Is T linear?

This is called **dilation** or **scaling** (by a factor of 1.5). Picture:



Linear Transformations Rotation

Define
$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 by $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} -y\\ x \end{pmatrix}$. Is T linear?

This is called rotation (by 90°). Picture:

$$T\begin{pmatrix}1\\2\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$
$$T\begin{pmatrix}-1\\1\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$$
$$T\begin{pmatrix}0\\-2\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$

