Announcements

Wednesday, September 27

- Webwork is due by Friday
- No quiz for this week
- Please fill out a feedback form in Room: ESLAVA at socrative.com
- It is anonymous:(it asks for a name, but you can make one up)
- Feedback form will remain open until Friday noon.
- Midterm grades
- Grades will be entered will be entered by Friday noon
- Handed back during recitation
- Notify your TA of any concern
- Verify grade in T-square matches your hardcopy
- Progress report: To help you tune up studying strategies
- Satisfactory if current grade is at least 70%
- 75\% Midterm
- 15% Quizzes (no drops)
- 5\% Webwork (no drops)
- 5\% Participation
- No grade discussion by email

Section 1.9

The Matrix of a Linear Transformation

Unit Coordinate Vectors

Definition
The unit coordinate vectors in \mathbf{R}^{n} are

This is what e_{1}, e_{2}, \ldots mean, for the rest of the class.

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Important: if A is an $m \times n$ matrix with columns $v_{1}, v_{2}, \ldots, v_{n}$, then $A e_{i}=v_{i}$ for $i=1,2, \ldots, n$: the transformation $T(x)=A x$ sends e_{i} to vector v_{i}.

Recap: Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$
A(u+v)=A u+A v \quad A(c v)=c A v
$$

So if $T(x)=A x$ is a matrix transformation then,

$$
T(u+v)=T(u)+T(v) \quad \text { and } \quad T(c u)=c T(u)
$$

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if it satisfies the above equations for all vectors u, v in \mathbf{R}^{n} and all scalars c.
In other words, T "respects" addition and scalar multiplication.

More generally, (in engineering this is called superposition)

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{n} T\left(v_{n}\right)
$$

So that unit coordinate vectors determine where all vectors in \mathbf{R}^{n} get mapped to in \mathbf{R}^{m}.

Linear Transformations are Matrix Transformations

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Let

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

This is an $m \times n$ matrix, and T is the matrix transformation for $A: T(x)=A x$.
The matrix A is called the standard matrix for T.

Take-Away

A linear transformation may not be given a priori as a matrix transformation but linear transformations are the same as matrix transformations.

Linear Transformations: Dilation

Before, we defined a dilation transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. What is its standard matrix?

Check:

$$
\left(\begin{array}{cc}
1.5 & 0 \\
0 & 1.5
\end{array}\right)\binom{x}{y}=\binom{1.5 x}{1.5 y}=1.5\binom{x}{y}=T\binom{x}{y} .
$$

Linear Transformations: Reflexion/Projection

Construction Phase 1

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Linear Transformations: Reflexion/Projection

Construction Phase 2

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{2}\right)=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text {. }
$$

Linear Transformations: Reflexion/Projection

Construction Phase 3

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
T\left(e_{3}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) .
$$

Linear Transformations: Reflexion/Projection

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ that reflects through the $x y$-plane and then projects onto the $y z$-plane?

$$
\left.\begin{array}{l}
T\left(e_{1}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
T\left(e_{2}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
T\left(e_{1}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
\end{array}\right\} \Longrightarrow A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Linear Transformations: Rotation

Question

What is the matrix for the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
T(x)=x \text { rotated counterclockwise by an angle } \theta \text { ? }
$$

Other Geometric Transformations

There is a long list of geometric transformations of \mathbf{R}^{2} in $\S 1.9$ of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, ...) Please look them over.

Onto Transformations

Definition
A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is onto (or surjective) if the range of T is equal to \mathbf{R}^{m} (its codomain). In other words, each b in \mathbf{R}^{m} is the image of at least one x in \mathbf{R}^{n} :

Characterization of Onto Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is onto
- $T(x)=b$ has a solution for every b in \mathbf{R}^{m}
- $A x=b$ is consistent for every b in \mathbf{R}^{m}
- A has a pivot in every row
- The columns of A span \mathbf{R}^{m}

One-to-one Transformations

Definition
A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one (or into, or injective) if different vectors in \mathbf{R}^{n} map to different vectors in \mathbf{R}^{m}. In other words, each b in \mathbf{R}^{m} is the image of at most one x in \mathbf{R}^{n} :

Characterization of One-to-One Transformations

Theorem
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with matrix A. Then the following are equivalent:

- T is one-to-one
- $T(x)=b$ has one or zero solutions for every b in \mathbf{R}^{m}
- $A x=b$ has a unique solution or is inconsistent for every b in \mathbf{R}^{m}
- $A x=0$ has a unique solution
- A has a pivot in every column.
- The columns of A are linearly independent

Question

If $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is one-to-one, what can we say about the relative sizes of n and m ?

Answer: A must have at least as many rows as columns $(n \leq m)$ to have a pivot in every column.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Extra: Linear Transformations are Matrix Transformations

Why is a linear transformation a matrix transformation?

