- Quiz this Friday covers sections 1.7,1.8 and 1.9.
- Quiz will have two questions

Define T(x) = Ax with A = ... Is the transformation... ? Provide... Design a transformation $T : R^2 \to R^4$ that satisfies...

Expectations:

- You need to know all new notation in those sections.
- ► And you need to understand how those concepts are related.
- Linear independence is also involved in those concepts.

Section 2.2

The Inverse of a Matrix

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that identity matrix

 $AB = I_n \quad \text{and} \quad BA = I_n$ $\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$

Example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

Elementary Matrices

Definition

An **elementary matrix** is a matrix E that *differs* from I_n by one *row operation*.

There are three kinds, corresponding to the three elementary row operations:

Important Fact: For any $n \times n$ matrix A, if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Example:

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \xrightarrow{R_2 = R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$

Elementary matrices are invertible. The inverse is the elementary matrix which un-does the row operation.

$$R_{2} = R_{2} \times 2$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} =$$

$$R_{2} = R_{2} + 2R_{1}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} =$$

$$R_{1} \longleftrightarrow R_{2}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} =$$

Poll

Solving Linear Systems via Inverses

Theorem

If A is **invertible**, then for every b there is *unique solution* to Ax = b:

 $x = A^{-1}b.$

Verify: Multiple by A on the left!

Example

Solve the system

$$2x + 3y + 2z = 1 x + 3z = 1 2x + 2y + 3z = 1$$
 using
$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}.$$

Answer:

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix $(A \mid I_n)$.
- 2. If the result has the form $(I_n | B)$, then A is invertible and $B = A^{-1}$.
- 3. Otherwise, A is not invertible.

Example

$${f A}=egin{pmatrix} 1 & 0 & 4 \ 0 & 1 & 2 \ 0 & -3 & -4 \end{pmatrix}$$

Check:

Why Does This Work?

First answer: We can think of the algorithm as *simultaneously solving* the equations

$$Ax_{1} = e_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$
$$Ax_{2} = e_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$
$$Ax_{3} = e_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 0 & -3 & -4 & | & 0 & 0 & 1 \end{pmatrix}$$

From theory: $x_i = A^{-1}Ax_i = A^{-1}e_i$. So x_i is the *i*-th column of A^{-1} .

Row reduction: the solution x_i appears in *i*-th column in the augmented part.

Second answer: Through *elementary matrices*, see extra material at the end.

The 2×2 case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The determinant of A is the number
 $det(A) = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$
Fact
A is invertible only when $det(A) \neq 0$, and

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Example

$$\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} =$$

Useful Facts

Suppose A, B and C are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Important: AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$.

Why? Similarly, $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

> In general The product of invertible matrices is invertible. The *inverse is the product* of the inverses, in the *reverse order*.

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n .

Why? Say the row operations taking A to I_n are the elementary matrices E_1, E_2, \ldots, E_k . So

pay attention to the order! $\longrightarrow E_k E_{k-1} \cdots E_2 E_1 A = I_n$ $\implies E_k E_{k-1} \cdots E_2 E_1 A A^{-1} = A^{-1}$ $\implies E_k E_{k-1} \cdots E_2 E_1 I_n = A^{-1}.$

This is what we do when row reducing the augmented matrix: *Do same row operations* to *A* (first line above) and to I_n (last line above). Therefore, you'll end up with I_n and A^{-1} .

$$(A \mid I_n) \dashrightarrow (I_n \mid A^{-1})$$

Section 2.3

Characterization of Invertible Matrices

Invertible Transformations

Definition

A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible if there exists $U : \mathbb{R}^n \to \mathbb{R}^n$ such that for all x in \mathbb{R}^n

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$.

In this case we say U is the inverse of T, and we write $U = T^{-1}$.

In other words, T(U(x)) = x, so T "undoes" U, and likewise U "undoes" T.

Fact A transformation *T* is invertible if and only if *it is both one-to-one and onto*.

Invertible Transformations

Examples

 T^{-1} is *clockwise* rotation by 45°.

Let T = shrinking by a factor of 2/3 in the plane. What is T^{-1} ?

 T^{-1} is *stretching* by 3/2.

Invertible Linear Transformations

Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be an invertible linear transformation with matrix A.

Let B be the matrix for T^{-1} . We know $T \circ T^{-1}$ has matrix AB, so for all x,

$$ABx = T \circ T^{-1}(x) = x.$$

Hence $AB = I_n$, that is $B = A^{-1}$ (This is why we define matrix inverses).

Fact If *T* is an invertible linear transformation with matrix *A*, then T^{-1} is an invertible linear transformation with matrix A^{-1} .

Non-invertibility: E.g. let T = projection onto the x-axis. What is T^{-1} ? *It is not invertible*: you can't undo it.

It's corresponding matrix
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 is not invertible!

Invertible transformations Example 1

Let T = shrinking by a factor of 2/3 in the plane. Its matrix is

Then $T^{-1} = stretching$ by 3/2. Its matrix is

Check:

Invertible transformations Example 2

Let T = counterclockwise rotation in the plane by 45° . Its matrix is

Then $T^{-1} =$ counterclockwise *rotation by* -45° . Its matrix is

Check:

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be defined by T(x) = Ax. The following statements are equivalent.

- 1. A is invertible.
- 2. T is invertible.
- 3. T is one-to-one.
- 4. T is onto.
- 5. A has a left inverse (there exists B such that $BA = I_n$).
- 6. A has a right inverse (there exists B such that $AB = I_n$).
- 7. A^{T} is invertible.
- 8. A is row equivalent to I_n .
- 9. A has n pivots (one on each column and row).
- 10. The columns of A are linearly independent.
- 11. Ax = 0 has only the trivial solution.
- 12. The columns of A span \mathbf{R}^n .
- 13. Ax = b is consistent for all b in \mathbf{R}^n .

As with all Equivalence theorems:

- For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- ► For non-invertible matrices: *all statements* of the Invertible Matrix Theorem *are false*.