Announcements

Wednesday, October 04

- Quiz this Friday covers sections 1.7,1.8 and 1.9.
- Quiz will have two questions

Define $T(x)=A x$ with $A=\ldots$. Is the transformation... ? Provide...
Design a transformation $T: R^{2} \rightarrow R^{4}$ that satisfies...
Expectations:

- You need to know all new notation in those sections.
- And you need to understand how those concepts are related.
- Linear independence is also involved in those concepts.

Section 2.2

The Inverse of a Matrix

The Definition of Inverse

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that
identity matrix

$$
\begin{aligned}
& A B=I_{n} \quad \text { and } \quad B A=I_{n} \cdot< \\
& \text { erse of } A \text {, and is written } A^{-1} .
\end{aligned}\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) .
$$

Elementary Matrices

Definition
An elementary matrix is a matrix E that differs from I_{n} by one row operation.
There are three kinds, corresponding to the three elementary row operations:

Important Fact: For any $n \times n$ matrix A, if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.
Example:

$$
\left(\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right) \xrightarrow{R_{2}=R_{2}+2 R_{1}}\left(\begin{array}{rrr}
1 & 0 & 4 \\
2 & 1 & 10 \\
0 & -3 & -4
\end{array}\right)
$$

Inverse of Elementary Matrices

Elementary matrices are invertible. The inverse is the elementary matrix which un-does the row operation.

$$
\begin{aligned}
& R_{2}=R_{2} \times 2 \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}= \\
& R_{2}=R_{2}+2 R_{1} \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}= \\
& R_{1} \longleftrightarrow R_{2} \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=
\end{aligned}
$$

Solving Linear Systems via Inverses

Theorem
If A is invertible, then for every b there is unique solution to $A x=b$:

$$
x=A^{-1} b
$$

Verify: Multiple by A on the left!

Example
Solve the system

$$
\begin{array}{r}
2 x+3 y+2 z=1 \\
x+3 z=1 \\
2 x+2 y+3 z=1
\end{array} \quad \text { using } \quad\left(\begin{array}{lll}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{array}\right) .
$$

Answer:

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1}.

1. Row reduce the augmented matrix $\left(A \mid I_{n}\right)$.
2. If the result has the form $\left(I_{n} \mid B\right)$, then A is invertible and $B=A^{-1}$.
3. Otherwise, A is not invertible.

Example

$$
A=\left(\begin{array}{rrr}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{array}\right)
$$

Computing A^{-1}

Check:

Why Does This Work?

First answer: We can think of the algorithm as simultaneously solving the equations

$$
\begin{array}{ll}
A x_{1}=e_{1}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{2}=e_{2}: & \left(\begin{array}{rrr|rrr}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right) \\
A x_{3}=e_{3}: & \left(\begin{array}{rrr|rll}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

- From theory: $x_{i}=A^{-1} A x_{i}=A^{-1} e_{i}$. So x_{i} is the i-th column of A^{-1}.
- Row reduction: the solution x_{i} appears in i-th column in the augmented part.

Second answer: Through elementary matrices, see extra material at the end.

The 2×2 case

$$
\begin{array}{r}
\text { Let } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) . \text { The determinant of } A \text { is the number } \\
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c .
\end{array}
$$

Fact

A is invertible only when $\operatorname{det}(A) \neq 0$, and

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Example

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\quad\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{-1}=
$$

Useful Facts

Suppose A, B and C are invertible $n \times n$ matrices.

1. A^{-1} is invertible and its inverse is $\left(A^{-1}\right)^{-1}=A$.
2. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Important: $A B$ is invertible and its inverse is $(A B)^{-1}=A^{-1} B^{-1} B^{-1} A^{-1}$.
Why?
Similarly, $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$

In general
The product of invertible matrices is invertible. The inverse is the product of the inverses, in the reverse order.

Extra: Why Does The Inversion Algorithm Work?

Theorem
An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_{n}.

Why? Say the row operations taking A to I_{n} are the elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$. So
pay attention to the order! $\longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A=I_{n}$

$$
\begin{aligned}
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} A A^{-1} & =A^{-1} \\
\Longrightarrow E_{k} E_{k-1} \cdots E_{2} E_{1} I_{n} & =A^{-1} .
\end{aligned}
$$

This is what we do when row reducing the augmented matrix:
Do same row operations to A (first line above) and to I_{n} (last line above). Therefore, you'll end up with I_{n} and A^{-1}.

$$
\left(A \mid I_{n}\right) \text { un } \rightarrow\left(I_{n} \mid A^{-1}\right)
$$

Section 2.3

Characterization of Invertible Matrices

Invertible Transformations

Definition

A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is invertible if there exists $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that for all x in \mathbf{R}^{n}

$$
T \circ U(x)=x \quad \text { and } \quad U \circ T(x)=x .
$$

In this case we say U is the inverse of T, and we write $U=T^{-1}$.
In other words, $T(U(x))=x$, so T "undoes" U, and likewise U "undoes" T.

Fact

A transformation T is invertible if and only if it is both one-to-one and onto.

Invertible Transformations

Examples
Let $T=$ counterclockwise rotation in the plane by 45°. What is T^{-1} ?

T^{-1} is clockwise rotation by 45°.
Let $T=$ shrinking by a factor of $2 / 3$ in the plane. What is T^{-1} ?

T^{-1} is stretching by $3 / 2$.

Invertible Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be an invertible linear transformation with matrix A.
Let B be the matrix for T^{-1}. We know $T \circ T^{-1}$ has matrix $A B$, so for all x,

$$
A B x=T \circ T^{-1}(x)=x
$$

Hence $A B=I_{n}$, that is $B=A^{-1}$ (This is why we define matrix inverses).

Fact

If T is an invertible linear transformation with matrix A, then
T^{-1} is an invertible linear transformation with matrix A^{-1}.

Non-invertibility: E.g. let $T=$ projection onto the x-axis. What is T^{-1} ? It is not invertible: you can't undo it.
It's corresponding matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is not invertible!

Invertible transformations

Example 1

Let $T=$ shrinking by a factor of $2 / 3$ in the plane. Its matrix is

Then $T^{-1}=$ stretching by $3 / 2$. Its matrix is

Check:

Invertible transformations

Example 2

Let $T=$ counterclockwise rotation in the plane by 45°. Its matrix is

Then $T^{-1}=$ counterclockwise rotation by -45°. Its matrix is

Check:

The Really Big Theorem for Square Matrices of Math 1553

The Invertible Matrix Theorem
Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. T is one-to-one.
4. T is onto.
5. A has a left inverse (there exists B such that $B A=I_{n}$).
6. A has a right inverse (there exists B such that $A B=I_{n}$).
7. A^{T} is invertible.
8. A is row equivalent to I_{n}.
9. A has n pivots (one on each column and row).
10. The columns of A are linearly independent.
11. $A x=0$ has only the trivial solution.
12. The columns of A span \mathbf{R}^{n}.
13. $A x=b$ is consistent for all b in \mathbf{R}^{n}.

Approach to The Invertible Matrix Theorem

As with all Equivalence theorems:

- For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- For non-invertible matrices: all statements of the Invertible Matrix Theorem are false.

