- Quiz this Friday covers sections 1.7,1.8 and 1.9.
- Quiz will have two questions

```
Define T(x)=Ax with A=\dots Is the transformation...? Provide...
Design a transformation T:R^2\to R^4 that satisfies...
```

Expectations:

- You need to know all new notation in those sections.
- ▶ And you need to understand how those concepts are related.
- Linear independence is also involved in those concepts.

Section 2.2

The Inverse of a Matrix

The Definition of Inverse

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that identity matrix

$$AB = I_n$$
 and $BA = I_n$.

In this case, B is the inverse of A , and is written A^{-1} .

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

Wild guess: $B = A^{-1}$. Check:

$$AB = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$BA = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Elementary Matrices

Definition

An **elementary matrix** is a matrix E that *differs* from I_n by one *row operation*.

There are **three kinds**, corresponding to the three elementary row operations:

Important Fact: For any $n \times n$ matrix A, if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Example:

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \xrightarrow{R_2 = R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$

Inverse of Elementary Matrices

Elementary matrices are invertible. The inverse is the elementary matrix which un-does the row operation.

$$R_{2} = R_{2} \times 2$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{2} = R_{2} + 2R_{1}$$

$$R_{2} = R_{2} - 2R_{1}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{1} \longleftrightarrow R_{2}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Poll

Let E be the 3×3 matrix corresponding to <u>swapping rows</u> 1 and 3. Mark <u>both</u> E and E^{-1} from the list below

a)
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Solution: Both E and E^{-1} are equal to $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

Solving Linear Systems via Inverses

Theorem

If A is **invertible**, then for every b there is unique solution to Ax = b:

$$x=A^{-1}b.$$

Verify: Multiple by A on the left!

$$Ax = AA^{-1}b = I_nb = b$$

Example
Solve the system
$$2x + 3y + 2z = 1 \\
x + 3z = 1 \\
2x + 2y + 3z = 1$$
using
$$\begin{pmatrix}
2 & 3 & 2 \\
1 & 0 & 3 \\
2 & 2 & 3
\end{pmatrix}^{-1} = \begin{pmatrix}
-6 & -5 & 9 \\
3 & 2 & -4 \\
2 & 2 & -3
\end{pmatrix}.$$

Answer:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

Computing A^{-1}

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix ($A \mid I_n$).
- 2. If the result has the form $(I_n \mid B)$, then A is invertible and $B = A^{-1}$.
- 3. Otherwise, A is not invertible.

Example

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Computing A^{-1}

$$\begin{pmatrix}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -4 & 0 & 0 & 1
\end{pmatrix}$$

$$R_{3} = R_{3} + 3R_{2}$$

$$\begin{pmatrix}
1 & 0 & 4 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 3 & 1
\end{pmatrix}$$

$$R_{1} = R_{1} - 2R_{3}$$

$$R_{2} = R_{2} - R_{3}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 2 & 0 & 3 & 1
\end{pmatrix}$$

$$R_{3} = R_{3} \div 2$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -6 & -2 \\
0 & 1 & 0 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & 3/2 & 1/2
\end{pmatrix}$$
So
$$\begin{pmatrix}
1 & 0 & 4 \\
0 & 1 & 2 \\
0 & -3 & -4
\end{pmatrix}^{-1} = \begin{pmatrix}
1 & -6 & -2 \\
0 & -2 & -1 \\
0 & 3/2 & 1/2
\end{pmatrix}.$$

Check:
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1 & -6 & -2 \\ 0 & -2 & -1 \\ 0 & 3/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Why Does This Work?

First answer: We can think of the algorithm as *simultaneously solving* the equations

$$Ax_{1} = \mathbf{e}_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = \mathbf{e}_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = \mathbf{e}_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

- ► From theory: $x_i = A^{-1}Ax_i = A^{-1}e_i$. So x_i is the *i*-th column of A^{-1} .
- Row reduction: the solution x_i appears in i-th column in the augmented part.

Second answer: Through elementary matrices, see extra material at the end.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Fact

$$A$$
 is invertible only when $\det(A) \neq 0$, and
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

We can get the identity only when $ad - bc \neq 0$. Verify:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Example

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 \cdot 4 - 2 \cdot 3 = -2 \qquad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}.$$

Useful Facts

Suppose A, B and C are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Important: AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$.

Why?
$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n$$
.
Similarly, $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
 $(ABC)(C^{-1}B^{-1}A^{-1}) = AB(CC^{-1})B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AA^{-1} = I_n$.

In general

The product of invertible matrices is invertible.

The *inverse is the product* of the inverses, in the *reverse order*.

Extra: Why Does The Inversion Algorithm Work?

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n .

Why? Say the row operations taking A to I_n are the elementary matrices E_1, E_2, \ldots, E_k . So

pay attention to the order!
$$\longrightarrow E_k E_{k-1} \cdots E_2 E_1 A = I_n$$

$$\Longrightarrow E_k E_{k-1} \cdots E_2 E_1 A A^{-1} = A^{-1}$$

$$\Longrightarrow E_k E_{k-1} \cdots E_2 E_1 I_n = A^{-1}.$$

This is what we do when row reducing the augmented matrix: Do same row operations to A (first line above) and to I_n (last line above). Therefore, you'll end up with I_n and A^{-1} .

$$(A \mid I_n) \rightsquigarrow (I_n \mid A^{-1})$$

Section 2.3

Characterization of Invertible Matrices

Invertible Transformations

Definition

A transformation $T \colon \mathbf{R}^n \to \mathbf{R}^n$ is **invertible** if there exists $U \colon \mathbf{R}^n \to \mathbf{R}^n$ such that for all x in \mathbf{R}^n

$$T \circ U(x) = x$$
 and $U \circ T(x) = x$.

In this case we say U is the **inverse** of T, and we write $U = T^{-1}$.

In other words, T(U(x)) = x, so T "undoes" U, and likewise U "undoes" T.

Fact

A transformation \mathcal{T} is invertible if and only if it is both one-to-one and onto.

This means for every y in \mathbb{R}^n , there is a unique x in \mathbb{R}^n such that T(x) = y.

Therefore we can define $T^{-1}(y) = x$.

Invertible Transformations Examples

Let T = counterclockwise rotation in the plane by 45°. What is T^{-1} ?

 T^{-1} is *clockwise* rotation by 45°.

Let T =shrinking by a factor of 2/3 in the plane. What is T^{-1} ?

 T^{-1} is *stretching* by 3/2.

Invertible Linear Transformations

Let $T: \mathbf{R}^n \to \mathbf{R}^n$ be an invertible linear transformation with matrix A.

Let B be the matrix for T^{-1} . We know $T \circ T^{-1}$ has matrix AB, so for all x,

$$ABx = T \circ T^{-1}(x) = x.$$

Hence $AB = I_n$, that is $B = A^{-1}$ (This is why we define matrix inverses).

Fact

If T is an invertible linear transformation with matrix A, then T^{-1} is an invertible linear transformation with matrix A^{-1} .

Non-invertibility: E.g. let T = projection onto the x-axis. What is T^{-1} ? *It is not invertible*: you can't undo it.

It's corresponding matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is not invertible!

Let T = shrinking by a factor of 2/3 in the plane. Its matrix is

$$A = \begin{pmatrix} 2/3 & 0 \\ 0 & 2/3 \end{pmatrix}$$

Then $T^{-1} = stretching$ by 3/2. Its matrix is

$$B = \begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix}$$

Check:

$$AB = \begin{pmatrix} 2/3 & 0 \\ 0 & 2/3 \end{pmatrix} \begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The matrix corresponding to $T \circ T^{-1}$ is AB, which satisfies (AB)x = x

Note: the matrix corresponding to $T^{-1} \circ T$ is BA, also satisfies (BA)x = x

Let T = counterclockwise rotation in the plane by 45° . Its matrix is

$$A = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

Then $T^{-1} = \text{counterclockwise } rotation by -45^{\circ}$. Its matrix is

$$B = \begin{pmatrix} \cos(-45^\circ) & -\sin(-45^\circ) \\ \sin(-45^\circ) & \cos(-45^\circ) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Check:

$$AB = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$BA = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The matrix corresponding to $T \circ T^{-1}$ is AB, which satisfies (AB)x = x Note: the matrix corresponding to $T^{-1} \circ T$ is BA, also satisfies (BA)x = x

The Really Big Theorem for Square Matrices of Math 1553

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by T(x) = Ax. The following statements are equivalent.

- 1. A is invertible.
- 2. T is invertible.
- 3. T is one-to-one.
- 4. T is onto.
- 5. A has a left inverse (there exists B such that $BA = I_n$).
- 6. A has a right inverse (there exists B such that $AB = I_n$).
- 7. A^{T} is invertible.
- 8. A is row equivalent to I_n .
- 9. A has n pivots (one on each column and row).
- 10. The columns of A are linearly independent.
- 11. Ax = 0 has only the trivial solution.
- 12. The columns of A span \mathbb{R}^n .
- 13. Ax = b is consistent for all b in \mathbb{R}^n .

Approach to The Invertible Matrix Theorem

As with all Equivalence theorems:

- ► For invertible matrices: all statements of the Invertible Matrix Theorem are true.
- ► For non-invertible matrices: all statements of the Invertible Matrix Theorem are false.

Tackle the assertions!

You know enough at this point to be able to *reduce all* of the statements *to assertions about the pivots* of a square matrix.

Strong recommendation: If you want to understand invertible matrices, go through all of the conditions of the IMT and *try to figure out on your own* why they're all equivalent.