Math 1553 J1-J3 Quiz : Sections 1.7-1.9

Solutions

The quiz has a total of 12 points and you have 10 minutes. Read carefully and Clearly justify how you obtained your answers.

1. [2 points each] Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be defines as $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{2 x+3 y-z}{4 x+6 y-2 z}$
a) Find the standard matrix for the linear one.
b) Draw a picture of the range of the linear one.
c) Is the linear one onto? If so, why? If not, find a vector b in \mathbf{R}^{2} which is not in the range. (It is enough to use the picture in (b).)

Solution.

a) We have to plug in the unit coordinate vectors to get the columns:

$$
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{2}{4} \quad T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\binom{3}{6} \quad T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{-1}{-2} .
$$

Therefore the standard matrix for T is

$$
\left(\begin{array}{ccc}
2 & 3 & -1 \\
4 & 6 & -2
\end{array}\right)
$$

b) The range of T is the span of the columns of the standard matrix. All three columns lie on the line spanned by $\binom{1}{2}$, so the range is just this line.

c) The range of T is a line in \mathbf{R}^{2}, so it is strictly smaller than the codomain. Hence T is not onto. Looking at the picture, we see that, for instance, $\binom{1}{0}$ is not in the range.
2. [2 points each] In each of the following, provide a transformation with the required property.
a) Give an example of $U: \mathbf{R}^{2} \rightarrow R^{2}$ that is not linear.
b) Given an example of $T: \mathbf{R}^{3} \rightarrow R^{2}$ that linear and is onto.
c) For your example in (b), is $\left\{T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)\right\}$ linearly independent? If not, provide a linear combination that equals the zero vector.

Solution.

a) Let $U\left(\binom{x_{1}}{x_{2}}\right)=\binom{x_{1}+1}{x_{2}^{2}}$. One property of linear trasnformations is that the zero vector is mapped to the zero vector. Since $U\left(\binom{0}{0}\right)=\binom{1}{0} \neq\binom{ 0}{0}$, then U is not linear.
b) Let $T(x)=A x$ with matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$. Since T is defined by matrix multiplication, it is linear. T is onto because the columns of A span \mathbf{R}^{2}.
c) The following is a linear combination of $\left\{T\left(e_{1}\right), T\left(e_{2}\right), T\left(e_{3}\right)\right\}$ that equals zero:

$$
1 \cdot T\left(e_{1}\right)+1 \cdot T\left(e_{2}\right)-1 \cdot T\left(e_{3}\right)=\binom{1}{0}+\binom{0}{1}-\binom{1}{1}=0
$$

Therefore, the set is not linearly independent.

