Section 2.8

Subspaces of \mathbb{R}^n

Subspaces: Motivation and examples

Example

The subset $\{0\}$:

Example

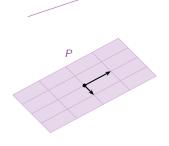
A line *L through the origin*:

Example

A plane *P* through the origin:

Example

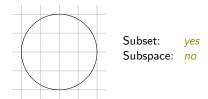
All of \mathbb{R}^n :



- ▶ The span was our first example of subspace: $Span\{v_1, ..., v_p\}$.
- ▶ But in general, subspaces are not defined by 'the generating vectors'

Subsets vs. Subspaces

A *subset* of \mathbb{R}^n is *any collection* of vectors whatsoever.



A **subspace** is a special kind of subset, which satisfies *three defining properties:*

- $1. \ \ "not\ empty"$
- 2. "closed under addition"
- 3. "closed under \times scalars"

Non-Examples

Color code

Purple: wanna-be 'subspaces'

Red vectors: would have to be in the subset too.

Non-Example

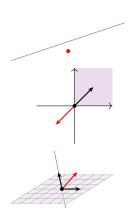
Any set that doesn't contain the origin

Non-Example

The first quadrant in ${\bf R}^2$.

Non-Example

A line union a plane in \mathbb{R}^3 .



The Definition of Subspace

Definition

A subspace of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V. "closed under addition"

"not empty"

3. If u is in V and c is in R, then cu is in V. "closed under \times scalars"

Consequences of definition:

- ▶ By (3), if v is in V, then so is the line through v.
- ▶ By (2),(3), if u, v are in V, then so is xu + yv, for all $x, y \in \mathbf{R}$.

A subspace V contains the span of any set of vectors in V.

Spans are Subspaces

Theorem

Any Span $\{v_1, v_2, \dots, v_n\}$ is a subspace.

Definition

If $V = \text{Span}\{v_1, v_2, \dots, v_n\}$, we say that V is the subspace **generated by** or **spanned by** the vectors v_1, v_2, \dots, v_n .

!!!

Every span is a subspace but also every subspace is a span.

How would you find the generating vectors?

Poll

Subspaces Verification

Let
$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}$$
 in $\mathbf{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.

- 1. Does *V* contain the zero vector?
- 3. Is V closed under scalar multiplication?

2. Is V closed under addition?

Basis and dimension of a Subspace

Let V be a subspace of \mathbb{R}^n and $\{v_1, v_2, \dots, v_m\}$ in V linearly independent. So that every time you 'add one' of these vectors, the span gets bigger.

What if
$$Span\{v_1,\ldots,v_m\}=V$$
?

Then any smaller set can't span V. If we remove any vector, the span gets smaller:

Definition

Let V be a subspace of \mathbb{R}^n . A basis of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in V such that:

- V = Span{v₁, v₂,..., v_m}, and
 {v₁, v₂,..., v_m} is linearly independent.

The number of vectors in a basis is the dimension of V, and is written dim V.

Important

A subspace has many different bases, but they all have the same number of vectors (see the exercises in §2.9).

Bases of R²

Question

What is a basis for \mathbb{R}^2 ?

We need two vectors that $span \mathbb{R}^2$ and are linearly independent. $\{e_1, e_2\}$ is one basis.

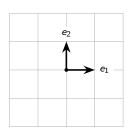
- 1. They span: $\binom{a}{b} = ae_1 + be_2$.
- 2. They are linearly independent.

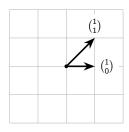
Question

What is another basis for \mathbb{R}^2 ?

Any two *nonzero vectors* that are *not collinear*. $\left\{ \binom{1}{0}, \binom{1}{1} \right\}$ is also a basis.

- 1. They span: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every row.
- 2. They are linearly independent: $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has a pivot in every column.





The unit coordinate vectors

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

are a basis for \mathbf{R}^n . The identity matrix has columns e_1, e_2, \ldots, e_n .

- 1. They span: I_n has a pivot in every row.
- 2. They are linearly independent: I_n has a pivot in every column.

In general: $\{v_1, v_2, \dots, v_n\} \text{ is a basis for } \mathbf{R}^n \text{ if and only if the matrix}$ $A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix}$ has a pivot in every row and every column, i.e. if A is invertible.

Basis of a Subspace Example

Example

Let

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x + 3y + z = 0 \right\} \qquad \mathcal{B} = \left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \; \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}.$$

Verify that \mathcal{B} is a basis for V.

Subspaces of a transformation

An $m \times n$ matrix A naturally gives rise to two subspaces.

Definition

The *column space* of A is the subspace of \mathbf{R}^m spanned by the columns of A. It is *written* Col A.

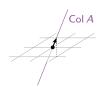
The **null space** of A is a subspace of \mathbf{R}^n containing the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{\mathsf{Nul}} A = \big\{ x \text{ in } \mathbf{R}^n \mid Ax = 0 \big\}.$$

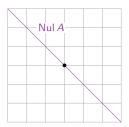
Column Space and Null Space Example

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the *column space*:



Let's compute the **null space**:



Verify: The null space is a subspace and a span

Check that the null space is a subspace:

Question

How to find vectors which span the null space? Answer: Parametric vector form!

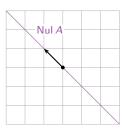
We know that the solution set to Ax = 0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \text{if, say, } x_3 \text{ and } x_4 \\ \text{are the } \textit{free} \\ \textit{variables.} \quad \text{Nul } A = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §1.5 (Solution Sets).

Find Null Space as a Span Example

Find vector(s) that span the null space of
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.



Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution to Ax=0 always form a basis for Nul A.

Example

Basis for Col A

The *pivot columns* of A always form a basis for Col A.

Warning: It is the pivot columns of the *original matrix A*, **not the row-reduced** form. (Row reduction changes the column space.)

Example

Why? End of §2.8, or ask in office hours.

How do you check if a subset is a subspace?

- ▶ Is it a span?
- ▶ Is it all of \mathbf{R}^n or the zero subspace $\{0\}$?

Can it be written as

- ▶ a span?
- the column space of a matrix?
- the null space of a matrix?
- ▶ a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

Can you verify directly that it satisfies the three defining properties?