Math 1553 J1-J3 Quiz : Sections 2.1-2.3 Solutions

The quiz has a total of 10 points and you have 10 minutes. Read carefully and clearly show your work.

- **1.** [4 points] If *A* is a 2×3 matrix and *B* is a 3×2 matrix. Which of the following are defined? (no justification is needed):
 - (1) *AB*
 - (2) BA^T
 - (3) $A + B^{T}$
 - (4) A^2

Solution.

- (1) Yes. AB will be a 2×2 matrix
- (2) No. The number of columns of B (2 col.) doesn't match the number of rows of A^T (3 col.)
- (3) Yes. Both matrices A and B^T have same number of rows and columns.
- (4) No. Only square matrices can be raised to a power.
- **2.** [6 points] Compute the inverse of $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ -1 & 1 & -2 \end{pmatrix}$. (If there is time, check your answers: e.g. $AA^{-1} = I$)

Solution.

$$A^{-1} = \begin{pmatrix} 1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
. Using the algorithm

$$\begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ -1 & 1 & -2 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{2} \longleftrightarrow R_{3} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 1 & -2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$R_{2} = R_{2} + R_{1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$R_{1} = R_{1} - 2R_{3} \begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$