Announcements Monday, October 16

- ▶ Midterm this Friday October 20th:
 - covers all material (except Sections 2.4-2.7) through Section 2.9
 - type of questions from Sections 1.7 through 2.9
- ▶ Review Session this Wednesday. Which topics do you want to review?

Subspaces of a transformation

Recall: a basis of a subspace V is a set of vectors that

- ▶ spans V and
- ▶ is linearly independent.

Let A be an $m \times n$ matrix.

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The null space of A is a subspace of \mathbf{R}^n containing the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \left\{ x \text{ in } \mathbf{R}^n \mid Ax = 0 \right\}.$$

Basis for Nul A

Fact

The *vectors in* the parametric vector form of the *general solution* to Ax=0 always form a **basis for** Nul A.

Example

- 1. Every solution to Ax = 0 has this form. So the *vectors span* Nul A by construction.
- 2. Look at the last two rows of the basis. Can you see why they are linearly independent?

Basis for Col A

The *pivot columns* of A always form a basis for Col A.

Warning: It is the pivot columns of the **original matrix** *A*, *not the row-reduced* form. (Row reduction changes the column space.)

Example

Why? End of §2.8, or ask in office hours.

Section 2.9

Dimension and Rank

The Rank Theorem

Recall:

- ▶ The dimension of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the *pivot columns*.
- ▶ A basis for the null space of A is given by the vectors attached to the *free variables* in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the range of T(x) = Ax (dimension of Col A).

Observe:

```
rank A = \dim \operatorname{Col} A = \text{the number of columns with pivots}
\dim \operatorname{Nul} A = \text{the number of free variables}
= \text{the number of columns without pivots.}
```

Rank Theorem

If A is an $m \times n$ matrix, then

rank $A + \dim \text{Nul } A = n = \text{the number of columns of } A$.

The Rank Theorem

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- ▶ Any *m linearly independent* vectors in *V* form *a basis* for *V*.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that $\dim V = m$, and you have m vectors $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ in V, then check only one of

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V

in order for \mathcal{B} to be a basis.

Poll

Bases as Coordinate Systems

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbb{R}^n . Any vector is a unique linear combination of the e_i :

$$v = {3 \choose 5} = 3 {1 \choose 0} + 5 {0 \choose 1} = 3e_1 + 5e_2.$$

Note that the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

Going backwards: for any basis \mathcal{B} , we *interpret the coefficients* of a linear combination as **coordinates with respect to** \mathcal{B} .

Definition

Let $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ be a basis of a subspace $V \subset \mathbf{R}^p$ (so $m \leq p$).

unique linear combination $x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$.

The \mathcal{B} -coordinate vector of x is the vector

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}$$
 in \mathbb{R}^m .

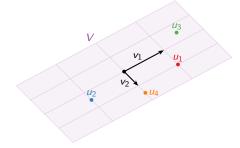
Bases as Coordinate Systems

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

These form a basis \mathcal{B} for the plane

$$V = \mathsf{Span}\{v_1, v_2\} \mathsf{in} \ \mathbf{R}^4.$$



Question: Estimate the *B-coordinates* of these vectors:

Remark

Make sense of V as two-dim: Choose a basis $\mathcal B$ and use $\mathcal B$ -coordinates. Careful: The coordinates give *only the coefficients* of a linear combination using such basis vectors.

Bases as Coordinate Systems Example 1

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} = \{v_1, v_2\}, \quad \ V = \mathsf{Span}\{v_1, v_2\}.$$

Verify that ${\cal B}$ is a basis:

Question: If
$$[x]_{\mathcal{B}} = \binom{5}{2}$$
, then what is x?

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$.

Bases as Coordinate Systems Example 2

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \mathsf{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V.

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$.

The Invertible Matrix Theorem

Using the *Rank Theorem* and the *Basis Theorem*, we have new interpretations of the meaning of invertibility.

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbf{R}^n$.
- 16. dim Col A = n.
- 17. $\operatorname{rank} A = n$
- 18. Nul $A = \{0\}$.
- 19. dim Nul A = 0.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Finding the \mathcal{B} -coordinates for x means solving the vector equation

$$x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$$

in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_m & x \\ | & | & & | & | \end{pmatrix}.$$

Question: What happens if you try to find the \mathcal{B} -coordinates of \times not in V?

Extra: Why coefficients are unique

Lemma like a theorem, but less important

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

for unique coefficients c_1, c_2, \ldots, c_m .