Announcements

Monday, October 16
\triangleright Midterm this Friday October 20th:

- covers all material (except Sections 2.4-2.7) through Section 2.9
- type of questions from Sections 1.7 through 2.9
\triangleright Review Session this Wednesday. Which topics do you want to review?

Subspaces of a transformation

Recall: a basis of a subspace V is a set of vectors that

- spans V and
- is linearly independent.

Let A be an $m \times n$ matrix.

- The column space of A is the subspace of \mathbf{R}^{m} spanned by the columns of A. It is written $\operatorname{Col} A$.
- The null space of A is a subspace of \mathbf{R}^{n} containing the set of all solutions of the homogeneous equation $A x=0$:

$$
\operatorname{Nul} A=\left\{x \text { in } \mathbf{R}^{n} \mid A x=0\right\}
$$

Basis for $\operatorname{Nul} A$

Fact

The vectors in the parametric vector form of the general solution to $A x=0$ always form a basis for $\mathrm{Nul} A$.

Example

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
-2 & -3 & 4 & 5 \\
2 & 4 & 0 & -2
\end{array}\right) \xrightarrow{\text { rref }} \underset{\sim}{\text { r. }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\underset{\substack{\text { parametric } \\
\text { vector } \\
\text { form } \\
\text { mann }}}{ } x=x_{3}\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right) \xrightarrow{\substack{\text { basis of } \\
\text { Nul } A \\
\text { mum }}}\left\{\left(\begin{array}{c}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

1. Every solution to $A x=0$ has this form.

So the vectors span $\operatorname{Nul} A$ by construction.
2. Look at the last two rows of the basis. Can you see why they are linearly independent?

Basis for $\operatorname{Col} A$

Fact

The pivot columns of A always form a basis for $\operatorname{Col} A$.

Warning: It is the pivot columns of the original matrix A, not the row-reduced form. (Row reduction changes the column space.)

Example

So a basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

Why? End of $\S 2.8$, or ask in office hours.

Section 2.9

Dimension and Rank

The Rank Theorem

Recall:

- The dimension of a subspace V is the number of vectors in a basis for V.
- A basis for the column space of a matrix A is given by the pivot columns.
- A basis for the null space of A is given by the vectors attached to the free variables in the parametric vector form.

Definition
The rank of a matrix A, written rank A, is the dimension of the range of $T(x)=A x($ dimension of $\operatorname{Col} A)$.
Observe:

$$
\begin{aligned}
\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A & =\text { the number of columns with pivots } \\
\operatorname{dim} \operatorname{Nul} A & =\text { the number of free variables } \\
& =\text { the number of columns without pivots. }
\end{aligned}
$$

Rank Theorem

If A is an $m \times n$ matrix, then
$\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=$ the number of columns of A.

The Rank Theorem

Example

$$
A=(\underbrace{\left.\begin{array}{r}
1 \\
-2 \\
2
\end{array} \begin{array}{rrr}
2 \\
-3 & 0 & -1 \\
4 & 5 \\
0 & -2
\end{array}\right) \underset{\text { free variables }}{\text { muref }}\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array} \begin{array}{r}
-8 \\
4 \\
0 \\
0
\end{array}\right)}_{\text {basis of } \operatorname{Col} A}
$$

A basis for $\operatorname{Col} A$ is

$$
\left\{\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right)\right\}
$$

so $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=2$.
Since there are two free variables x_{3}, x_{4}, the parametric vector form for the solutions to $A x=0$ is

$$
x=x_{3}\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right) \underset{\underset{\text { minnumin }}{\text { basis }} \operatorname{Nul} A}{\text { bunn }}\left\{\left(\begin{array}{r}
8 \\
-4 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
7 \\
-3 \\
0 \\
1
\end{array}\right)\right\} .
$$

Thus $\operatorname{dim} \operatorname{Nul} A=2$.
The Rank Theorem says $2+2=4$.

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

```
Upshot
If you already know that dim}V=m\mathrm{ , and you have m
vectors }\mathcal{B}={\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\ldots,\mp@subsup{v}{m}{}}\mathrm{ in }V\mathrm{ , then check only one
of
    1. \mathcal{B is linearly independent, or}
    2. }\mathcal{B}\mathrm{ spans V
in order for \mathcal{B to be a basis.}
```


Poll

Poll

Let A and B be 3×3 matrices. Suppose that $\operatorname{rank}(A)=2$ and $\operatorname{rank}(B)=2$. Is it possible that $A B=0$?

Our information, by the rank theorem:
$\operatorname{rank}(A)=2$ and $\operatorname{dim} \operatorname{Nul} A=1$, also
$\operatorname{rank}(B)=\operatorname{dim} \operatorname{Col} B=2$ and $\operatorname{dim} \operatorname{Nul} B=1$.
If $A B=0$, then $A B x=0$ for every x in \mathbf{R}^{3}.
This means $A(B x)=0$ for all $x \in \mathbf{R}^{3}$. Every vector $B x$ is in Nul A.
Then the range of $T(x)=B x$ (same as Col B) is contained in Nul A.
But a 1-dimensional space can't contain a 2-dimensional space.

Bases as Coordinate Systems

The unit coordinate vectors $e_{1}, e_{2}, \ldots, e_{n}$ form a basis for \mathbf{R}^{n}. Any vector is a unique linear combination of the e_{i} :

$$
v=\binom{3}{5}=3\binom{1}{0}+5\binom{0}{1}=3 e_{1}+5 e_{2} .
$$

Note that the coordinates of v are exactly the coefficients of e_{1}, e_{2}, e_{3}.
Going backwards: for any basis \mathcal{B}, we interpret the coefficients of a linear combination as coordinates with respect to \mathcal{B}.
Definition
Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace $V \subset \mathbf{R}^{p}$ (so $m \leq p$). The coordinates of x with respect to \mathcal{B} are the coefficients $c_{1}, c_{2}, \ldots, c_{m}$ of the unique linear combination $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$.
The \mathcal{B}-coordinate vector of x is the vector

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { in } \mathbf{R}^{m}
$$

Bases as Coordinate Systems

Picture

Let

$$
v_{1}=\left(\begin{array}{r}
2 \\
-1 \\
0 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

These form a basis \mathcal{B} for the plane

$$
V=\operatorname{Span}\left\{v_{1}, v_{2}\right\} \text { in } \mathbf{R}^{4}
$$

Question: Estimate the \mathcal{B}-coordinates of these vectors:

$$
\left[u_{1}\right]_{\mathcal{B}}=\binom{1}{1} \quad\left[u_{2}\right]_{\mathcal{B}}=\binom{-1}{\frac{1}{2}} \quad\left[u_{3}\right]_{\mathcal{B}}=\binom{\frac{3}{2}}{-\frac{1}{2}} \quad\left[u_{4}\right]_{\mathcal{B}}=\binom{0}{\frac{3}{2}}
$$

Remark
Make sense of V as two-dim: Choose a basis \mathcal{B} and use \mathcal{B}-coordinates. Careful: The coordinates give only the coefficients of a linear combination using such basis vectors.

Bases as Coordinate Systems

Example 1

Let $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \quad v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \quad \mathcal{B}=\left\{v_{1}, v_{2}\right\}, \quad V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Verify that \mathcal{B} is a basis:
Span: by definition $V=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$.
Linearly independent: because they are not multiples of each other.
Question: If $[x]_{\mathcal{B}}=\binom{5}{2}$, then what is x ?

$$
[x]_{\mathcal{B}}=\binom{5}{2} \quad \text { means } \quad x=5 v_{1}+2 v_{2}=5\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
7 \\
2 \\
7
\end{array}\right)
$$

Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{l}5 \\ 3 \\ 5\end{array}\right)$.
We have to solve the vector equation $x=c_{1} v_{1}+c_{2} v_{2}$ in the unknowns c_{1}, c_{2}.

$$
\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
1 & 1 & 5
\end{array}\right) \text { ana }\left(\begin{array}{ll|l}
1 & 1 & 5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) \text { an } \rightarrow\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

So $c_{1}=2$ and $c_{2}=3$, so $x=2 v_{1}+3 v_{2}$ and $[x]_{\mathcal{B}}=\binom{2}{3}$.

Bases as Coordinate Systems

Example 2

Let $v_{1}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}2 \\ 8 \\ 6\end{array}\right), \quad V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
Question: Find a basis for V.
V is the column span of the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 2 \\
3 & 1 & 8 \\
2 & 1 & 6
\end{array}\right) \underset{\sim}{\text { row reduce }}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

A basis for the column span is formed by the pivot columns: $\mathcal{B}=\left\{v_{1}, v_{2}\right\}$.
Question: Find the \mathcal{B}-coordinates of $x=\left(\begin{array}{c}4 \\ 11 \\ 8\end{array}\right)$.
We have to solve $x=c_{1} v_{1}+c_{2} v_{2}$.

$$
\left(\begin{array}{rr|r}
2 & -1 & 4 \\
3 & 1 & 11 \\
2 & 1 & 8
\end{array}\right) \underset{\text { row reduce }}{\text { romm }}\left(\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So $x=3 v_{1}+2 v_{2}$ and $[x]_{\mathcal{B}}=\binom{3}{2}$.

The Invertible Matrix Theorem

Addenda

Using the Rank Theorem and the Basis Theorem, we have new interpretations of the meaning of invertibility.

The Invertible Matrix Theorem
Let A be an $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

Bases as Coordinate Systems

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V and x is in V, then

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { means } \quad x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

Finding the \mathcal{B}-coordinates for x means solving the vector equation

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

in the unknowns $c_{1}, c_{2}, \ldots, c_{m}$. This (usually) means row reducing the augmented matrix

$$
\left(\begin{array}{cccc|c}
\mid & \mid & & \mid & \mid \\
v_{1} & v_{2} & \cdots & v_{m} & x \\
\mid & \mid & & \mid & \mid
\end{array}\right)
$$

Question: What happens if you try to find the \mathcal{B}-coordinates of \times not in V ? You end up with an inconsistent system: $x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}$ has no solution.

Extra: Why coefficients are unique

Lemma like a theorem, but less important

If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

for unique coefficients $c_{1}, c_{2}, \ldots, c_{m}$.
Proof. We know x is a linear combination of the v_{i} (they span V). Suppose that we can write x as a linear combination with different lists of coefficients:

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{m}^{\prime} v_{m}
\end{aligned}
$$

Subtracting:

$$
0=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{m}-c_{m}^{\prime}\right) v_{m}
$$

Since $v_{1}, v_{2}, \ldots, v_{m}$ are linearly independent, they only have the trivial linear dependence relation. That means each $c_{i}-c_{i}^{\prime}=0$, or $c_{i}=c_{i}^{\prime}$.

