
Announcements
Monday, October 16

. Midterm this Friday October 20th:

I covers all material (except Sections 2.4-2.7) through Section 2.9

I type of questions from Sections 1.7 through 2.9

. Review Session this Wednesday. Which topics do you want to review?



Subspaces of a transformation

Recall: a basis of a subspace V is a set of vectors that

I spans V and

I is linearly independent.

Let A be an m × n matrix.

I The column space of A is the subspace of Rm spanned by the columns of
A. It is written ColA.

I The null space of A is a subspace of Rn containing the set of all solutions
of the homogeneous equation Ax = 0:

NulA =
{
x in Rn | Ax = 0

}
.



Basis for NulA

The vectors in the parametric vector form of the general solution
to Ax = 0 always form a basis for NulA.

Fact

Example

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

 rref

 1 0 −8 −7
0 1 4 3
0 0 0 0


parametric

vector
form

x = x3


8
−4
1
0

+ x4


7
−3
0
1


basis of
NulA




8
−4
1
0

 ,


7
−3
0
1




1. Every solution to Ax = 0 has this form. So the vectors span NulA by
construction.

2. Look at the last two rows of the basis. Can you see why they are linearly
independent?



Basis for ColA

The pivot columns of A always form a basis for ColA.

Fact

Warning: It is the pivot columns of the original matrix A, not the row-reduced
form. (Row reduction changes the column space.)

Example

A =

 1 2 0 −1
−2 −3 4 5

2 4 0 −2

 rref

 1 0 −8 −7
0 1 4 3
0 0 0 0


pivot columns in rrefpivot columns = basis

So a basis for ColA is 
 1
−2

2

 ,

 2
−3

4

 .

Why? End of §2.8, or ask in office hours.



Section 2.9

Dimension and Rank



The Rank Theorem

Recall:

I The dimension of a subspace V is the number of vectors in a basis for V .

I A basis for the column space of a matrix A is given by the pivot columns.

I A basis for the null space of A is given by the vectors attached to the
free variables in the parametric vector form.

Definition
The rank of a matrix A, written rankA, is the dimension of the range of
T (x) = Ax (dimension of ColA).

Observe:
rankA = dim ColA = the number of columns with pivots

dim NulA = the number of free variables

= the number of columns without pivots.

Rank Theorem
If A is an m × n matrix, then

rankA + dim NulA= n = the number of columns of A.



The Rank Theorem
Example

1 2 0 −1
−2 −3 4 5
2 4 0 −2

  1 0 −8 −7
0 1 4 3
0 0 0 0

 rref
A =

basis of ColAbasis of ColA free variables

A basis for ColA is 
 1
−2

2

 ,

 2
−3

4

 ,

so rankA = dim ColA = 2.

Since there are two free variables x3, x4, the parametric vector form for the
solutions to Ax = 0 is

x = x3


8
−4

1
0

+ x4


7
−3

0
1

 basis for NulA




8
−4

1
0

 ,


7
−3

0
1


 .

Thus dim NulA = 2.

The Rank Theorem says 2 + 2 = 4.



The Basis Theorem

Basis Theorem
Let V be a subspace of dimension m. Then:

I Any m linearly independent vectors in V form a basis for V .

I Any m vectors that span V form a basis for V .

If you already know that dimV = m, and you have m
vectors B = {v1, v2, . . . , vm} in V , then check only one
of

1. B is linearly independent, or

2. B spans V

in order for B to be a basis.

Upshot



Poll

Let A and B be 3× 3 matrices. Suppose that rank(A) = 2 and
rank(B) = 2. Is it possible that AB = 0?

Poll

Our information, by the rank theorem:
rank(A) = 2 and dim NulA = 1, also
rank(B) =dim ColB = 2 and dim NulB = 1.

If AB = 0, then ABx = 0 for every x in R3.

This means A(Bx) = 0 for all x ∈ R3. Every vector Bx is in NulA.

Then the range of T (x) = Bx (same as ColB) is contained in NulA.
But a 1-dimensional space can’t contain a 2-dimensional space.

NulA

does not
contain

ColB



Bases as Coordinate Systems

The unit coordinate vectors e1, e2, . . . , en form a basis for Rn. Any vector is a
unique linear combination of the ei :

v =

(
3
5

)
= 3

(
1
0

)
+ 5

(
0
1

)
= 3e1 + 5e2.

Note that the coordinates of v are exactly the coefficients of e1, e2, e3.

Going backwards: for any basis B, we interpret the coefficients of a linear
combination as coordinates with respect to B.

Definition
Let B = {v1, v2, . . . , vm} be a basis of a subspace V ⊂ Rp (so m ≤ p). The
coordinates of x with respect to B are the coefficients c1, c2, . . . , cm of the
unique linear combination x = c1v1 + c2v2 + · · ·+ cmvm.
The B-coordinate vector of x is the vector

[x ]B =

c1
...
cm

 in Rm.



Bases as Coordinate Systems
Picture

Let

v1 =


2
−1

0
1

 v2 =


1
0
0
−1


These form a basis B for the plane

V = Span{v1, v2}in R4.

u1

u2

u3

u4

v1

v2

V

Question: Estimate the B-coordinates of these vectors:

[u1]B =

(
1
1

)
[u2]B =

(
−1

1
2

)
[u3]B =

(
3
2

− 1
2

)
[u4]B =

(
0
3
2

)
Remark
Make sense of V as two-dim: Choose a basis B and use B-coordinates.
Careful: The coordinates give only the coefficients of a linear combination
using such basis vectors.



Bases as Coordinate Systems
Example 1

Let v1 =

1
0
1

 , v2 =

1
1
1

 , B = {v1, v2}, V = Span{v1, v2}.

Verify that B is a basis:
Span: by definition V = Span{v1, v2}.
Linearly independent: because they are not multiples of each other.

Question: If [x ]B =
(
5
2

)
, then what is x?

[x ]B =

(
5
2

)
means x = 5v1 + 2v2 = 5

1
0
1

+ 2

1
1
1

 =

7
2
7

 .

Question: Find the B-coordinates of x =

5
3
5

.

We have to solve the vector equation x = c1v1 + c2v2 in the unknowns c1, c2. 1 1 5
0 1 3
1 1 5

  1 1 5
0 1 3
0 0 0

  1 0 2
0 1 3
0 0 0


So c1 = 2 and c2 = 3, so x = 2v1 + 3v2 and [x ]B =

(
2
3

)
.



Bases as Coordinate Systems
Example 2

Let v1 =

2
3
2

 , v2 =

−1
1
1

 , v3 =

2
8
6

 , V = Span{v1, v2, v3}.

Question: Find a basis for V .
V is the column span of the matrix

A =

 2 −1 2
3 1 8
2 1 6

 row reduce

 1 0 2
0 1 2
0 0 0

 .

A basis for the column span is formed by the pivot columns: B = {v1, v2}.

Question: Find the B-coordinates of x =

 4
11
8

.

We have to solve x = c1v1 + c2v2. 2 −1 4
3 1 11
2 1 8

 row reduce

 1 0 3
0 1 2
0 0 0


So x = 3v1 + 2v2 and [x ]B =

(
3
2

)
.



The Invertible Matrix Theorem
Addenda

Using the Rank Theorem and the Basis Theorem, we have new interpretations
of the meaning of invertibility.

The Invertible Matrix Theorem
Let A be an n × n matrix, and let T : Rn → Rn be the linear transformation
T (x) = Ax . The following statements are equivalent.

1. A is invertible.

2. T is invertible.

3. A is row equivalent to In.

4. A has n pivots.

5. Ax = 0 has only the trivial solution.

6. The columns of A are linearly independent.

7. T is one-to-one.

8. Ax = b is consistent for all b in Rn.

9. The columns of A span Rn.

10. T is onto.

11. A has a left inverse (there exists B such that BA = In).

12. A has a right inverse (there exists B such that AB = In).

13. AT is invertible.

14. The columns of A form a basis for Rn.

15. ColA = Rn.

16. dim ColA = n.

17. rankA = n.

18. NulA = {0}.
19. dim NulA = 0.



Bases as Coordinate Systems
Summary

If B = {v1, v2, . . . , vm} is a basis for a subspace V and x is in V , then

[x ]B =


c1
c2
...
cm

 means x = c1v1 + c2v2 + · · ·+ cmvm.

Finding the B-coordinates for x means solving the vector equation

x = c1v1 + c2v2 + · · ·+ cmvm

in the unknowns c1, c2, . . . , cm. This (usually) means row reducing the
augmented matrix  | | | |

v1 v2 · · · vm x
| | | |

 .

Question: What happens if you try to find the B-coordinates of x not in V ?
You end up with an inconsistent system: x = c1v1 + c2v2 + · · ·+ cmvm has no
solution.



Extra: Why coefficients are unique

Lemma like a theorem, but less important

If B = {v1, v2, . . . , vm} is a basis for a subspace V , then any vector x in V can
be written as a linear combination

x = c1v1 + c2v2 + · · ·+ cmvm

for unique coefficients c1, c2, . . . , cm.

Proof. We know x is a linear combination of the vi (they span V ). Suppose
that we can write x as a linear combination with different lists of coefficients:

x = c1v1 + c2v2 + · · ·+ cmvm

x = c ′1v1 + c ′2v2 + · · ·+ c ′mvm

Subtracting:

0 = x − x = (c1 − c ′1)v1 + (c2 − c ′2)v2 + · · ·+ (cm − c ′m)vm

Since v1, v2, . . . , vm are linearly independent, they only have the trivial linear
dependence relation. That means each ci − c ′i = 0, or ci = c ′i .


