Review for Chapter 2

Selected Topics

Matrix Multiplication

Method 1: Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix with columns $v_{1}, v_{2} \ldots, v_{p}$:

$$
B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

The product $A B$ is the $m \times p$ matrix with columns $A v_{1}, A v_{2}, \ldots, A v_{p}$:

$$
A B \stackrel{\text { def }}{=}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A v_{1} & A v_{2} & \cdots & A v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

Method 2: The $i j$ entry of $C=A B$ is the i th row of A times the j th column of B :

$$
\begin{gathered}
c_{i j}=(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} . \\
\left(\begin{array}{ccccc}
a_{11} & \cdots & a_{1 k} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i k} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m k} & \cdots & a_{m n}
\end{array}\right) \cdot\left(\begin{array}{cccccc}
b_{11} & \cdots & b_{1 j} & \cdots & b_{1 p} \\
\vdots & & \vdots \\
b_{k 1} & \cdots & & \vdots \\
\vdots & & b_{k j} \\
\vdots \\
b_{n 1} & \cdots & \cdots & b_{k p} \\
b_{n j} \\
j \text { jth column } & \cdots & b_{n p}
\end{array}\right)=\left(\begin{array}{ccccc}
c_{11} & \cdots & c_{1 j} & \cdots & c_{1 p} \\
\vdots & & \vdots & & \vdots \\
c_{i 1} & \cdots & c_{i j} & \cdots & c_{i p} \\
\vdots & & \vdots & & \vdots \\
c_{m 1} & \cdots & c_{m j} & \cdots & c_{m p}
\end{array}\right) \\
\text { ij entry }
\end{gathered}
$$

Matrix Multiplication/Inversion and Linear Transformations

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be linear transformations with matrices A and B. The composition is the linear transformation

$$
T \circ U: \mathbf{R}^{p} \rightarrow \mathbf{R}^{m} \quad \text { defined by } \quad T \circ U(x)=T(U(x))
$$

Fact: The matrix for $T \circ U$ is $A B$.
Now let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be an invertible linear transformation. This means there is a linear transformation $T^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $T \circ T^{-1}(x)=x$ for all x in \mathbf{R}^{n}. Equivalently, it means T is one-to-one and onto.
Fact: If A is the matrix for T, then A^{-1} is the matrix for T^{-1}.

Matrix Multiplication/Inversion and Linear Transformations

Example

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ scale the x-axis by 2 , and let $U: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be counterclockwise rotation by 90°.

Their matrices are:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The composition $T \circ U$ is: first rotate counterclockwise by 90°, then scale the x-axis by 2 . The matrix for $T \circ U$ is

$$
A B=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right)
$$

The inverse of U rotates clockwise by 90°. The matrix for U^{-1} is

$$
B^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Matrix Inverses

The inverse of an $n \times n$ matrix A is a matrix A^{-1} such that $A A^{-1}=I_{n}$ (equivalently, $A^{-1} A=I_{n}$).
2×2 case:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

$n \times n$ case: Row reduce the augmented matrix $\left(A \mid I_{n}\right)$. If you get ($\left.I_{n} \mid B\right)$, then $B=A^{-1}$. Otherwise, A is not invertible.

Solving linear systems by "dividing by A ": If A is invertible, then

$$
A x=b \Longleftrightarrow x=A^{-1} b
$$

Important

If A is invertible, then $A x=b$ has exactly one solution for any b, namely, $x=A^{-1} b$.

Solving Linear Systems by Inverting Matrices

Example

Important

If A is invertible, then $A x=b$ has exactly one solution for any b, namely, $x=A^{-1} b$.

Example
Solve $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) x=\binom{b_{1}}{b_{2}}$.
Answer:

$$
x=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)^{-1}\binom{b_{1}}{b_{2}}=\frac{1}{2 \cdot 3-1 \cdot 1}\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right)\binom{b_{1}}{b_{2}}=\frac{1}{5}\binom{3 b_{1}-b_{2}}{-b_{1}+2 b_{2}}
$$

Elementary Matrices

Definition

An elementary matrix is a square matrix E which differs from I_{n} by one row operation.
There are three kinds:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { scaling } \\
\left(R_{2}=2 R_{2}\right)
\end{array} & \begin{array}{c}
\text { row replacement } \\
\left(R_{2}=R_{2}+2 R_{1}\right)
\end{array} & \left(R_{1} \stackrel{\text { swap }}{\longleftrightarrow} R_{2}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}
$$

Fact: if E is the elementary matrix for a row operation, then $E A$ differs from A by the same row operation.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 4
\end{array}\right) \quad \leadsto \sim B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 4
\end{array}\right)
$$

You get B by subtracting $2 \times$ the first row of A from the second row.

$$
B=E A \quad \text { where } \quad E=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \quad\binom{\text { subtract } 2 \times \text { the first row }}{\text { of } I_{2} \text { from the second row }}
$$

The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained by doing the opposite row operation to I_{n}.

$$
\begin{gathered}
R_{2}=R_{2} \times 2 \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\begin{array}{cc}
R_{2} \div 2 \\
R_{2}=R_{2}+2 R_{1} \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \begin{array}{c}
R_{2}=R_{2}-2 R_{1} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}= \\
R_{1} \longleftrightarrow R_{2} \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array} \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\begin{array}{l}
R_{1} \longleftrightarrow R_{2}
\end{array} \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

If A is invertible, then there are a sequence of row operations taking A to I_{n} :

$$
E_{r} E_{r-1} \cdots E_{2} E_{1} A=I_{n}
$$

Taking inverses (note the order!):

$$
A=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1} I_{n}=E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1}
$$

The Invertible Matrix Theorem

For reference

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation $T(x)=A x$. The following statements are equivalent.

1. A is invertible.
2. T is invertible.
3. A is row equivalent to I_{n}.
4. A has n pivots.
5. $A x=0$ has only the trivial solution.
6. The columns of A are linearly independent.
7. T is one-to-one.
8. $A x=b$ is consistent for all b in \mathbf{R}^{n}.
9. The columns of A span \mathbf{R}^{n}.
10. T is onto.
11. A has a left inverse (there exists B such that $B A=I_{n}$).
12. A has a right inverse (there exists B such that $A B=I_{n}$).
13. A^{T} is invertible.
14. The columns of A form a basis for \mathbf{R}^{n}.
15. $\operatorname{Col} A=\mathbf{R}^{n}$.
16. $\operatorname{dim} \operatorname{Col} A=n$.
17. $\operatorname{rank} A=n$.
18. $\operatorname{Nul} A=\{0\}$.
19. $\operatorname{dim} \operatorname{Nul} A=0$.

Learn it!

Subspaces

Definition

A subspace of \mathbf{R}^{n} is a subset V of \mathbf{R}^{n} satisfying:

1. The zero vector is in V.
2. If u and v are in V, then $u+v$ is also in V.
3. If u is in V and c is in \mathbf{R}, then $c u$ is in V.

Examples:

- Any $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.
- The column space of a matrix: $\operatorname{Col} A=\operatorname{Span}\{$ columns of $A\}$.
- The null space of a matrix: $\operatorname{Nul} A=\{x \mid A x=0\}$.
- \mathbf{R}^{n} and $\{0\}$

If V can be written in any of the above ways, then it is automatically a subspace: you're done!

Subspaces

Example

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?

1. Since $0+0=0$, the zero vector is in V.
2. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)$ be arbitrary vectors in V.

- This means $x+y=0$ and $x^{\prime}+y^{\prime}=0$.
- We have to check if $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{l}x+x^{\prime} \\ y+y^{\prime} \\ z+z^{\prime}\end{array}\right)$ is in V.
- This means $\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=0$.

Indeed:

$$
\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)=(x+y)+\left(x^{\prime}+y^{\prime}\right)=0+0=0
$$

so condition (2) holds.

Subspaces

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$ a subspace?
3. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be in V and let c be a scalar.

- This means $x+y=0$.
- We have to check if $c\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}c x \\ c y \\ c z\end{array}\right)$ is in V.
- This means $c x+c y=0$.

Indeed:

$$
c x+c y=c(x+y)=c \cdot 0=0
$$

So condition (3) holds.
Since conditions (1), (2), and (3) hold, V is a subspace.

Subspaces

Example

Example

Is $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid \sin (x)=0\right\}$ a subspace?

1. Since $\sin (0)=0$, the zero vector is in V.
2. Let $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ be in V and let c be a scalar.

- This means $\sin (x)=0$.
- We have to check if $c\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}c x \\ c y \\ c z\end{array}\right)$ is in V.
- This means $\sin (c x)=0$.

This is not true in general: take $x=\pi$ and $c=\frac{1}{2}$. Then $\sin (c x)=\sin (\pi / 2)=1$. So $\left(\begin{array}{l}\pi \\ 0 \\ 0\end{array}\right)$ is in V but $\frac{1}{2}\left(\begin{array}{l}\pi \\ 0 \\ 0\end{array}\right)$ is not.

Since condition (3) fails, V is not a subspace.

Basis of a Subspace

Definition

Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in \mathbf{R}^{n} such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

The number of vectors in a basis is the dimension of V, and is written $\operatorname{dim} V$.

To check that \mathcal{B} is a basis for V, you have to check two things:

1. \mathcal{B} spans V.
2. \mathcal{B} is linearly independent.

This is what it means to justify the statement " \mathcal{B} is a basis for V."

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

So if you already know the dimension of V, you only have to check one.

Basis of a Subspace

Example

Verify that $\left\{\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $V=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right.$ in $\left.\mathbf{R}^{3} \mid x+y=0\right\}$.
0 . In V : both are in V because $1+(-1)=0$ and $0+0=0$.

1. Span: If $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is in V, then $y=-x$, so we can write it as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x \\
-x \\
z
\end{array}\right)=x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

2. Linearly independent:

$$
x\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+y\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0 \Longrightarrow\left(\begin{array}{c}
x \\
-x \\
y
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \Longrightarrow x=y=0 .
$$

If we knew a priori that $\operatorname{dim} V=2$, then we would only have to check 0 , then 1 or 2 .

Bases of $\operatorname{Col} A$ and $\operatorname{Nul} A$

$$
A=\left(\begin{array}{rrrr}
1 \\
-2 & - & \begin{array}{r}
2 \\
-3
\end{array} & 0 \\
4 & -1 \\
4 & 0 & -2
\end{array}\right) \quad \underset{\sim}{\text { rref }}\left(\begin{array}{rrrr}
1 & 0 & -8 & -7 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

pivot columns $=$ basis $\{m m m \sim$ pivot columns in rref
So a basis for $\operatorname{Col} A$ is $\left\{\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{r}2 \\ -3 \\ 4\end{array}\right)\right\}$. A vector in $\operatorname{Col} A:\left(\begin{array}{r}1 \\ -2 \\ 2\end{array}\right)$.
Parametric vector form for solutions to $A x=0$:

A vector in $\operatorname{Nul} A$: any solution to $A x=0$, e.g., $x=\left(\begin{array}{c}8 \\ -4 \\ 1 \\ 0\end{array}\right)$.

Rank Theorem

Rank Theorem

If A is an $m \times n$ matrix, then

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n=\text { the number of columns of } A \text {. }
$$

In this case, $\operatorname{rank} A=2$ and $\operatorname{dim} \operatorname{Nul} A=2$, and $2+2=4$, which is the number of columns of A.

