Review for Chapter 2

Selected Topics

Matrix Multiplication

Method 1: Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix with columns v_1, v_2, \ldots, v_p :

$$B = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_p \\ | & | & | \end{pmatrix}.$$

The **product** AB is the $m \times p$ matrix with columns Av_1, Av_2, \ldots, Av_p :

$$AB \stackrel{\text{def}}{=} \begin{pmatrix} | & | & | \\ Av_1 & Av_2 & \cdots & Av_p \\ | & | & | \end{pmatrix}.$$

Method 2: The *ij* entry of C = AB is the *i*th row of A times the *j*th column of B:

$$c_{ij} = (AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

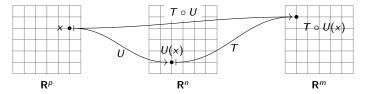
$$\begin{pmatrix}a_{11} \cdots a_{1k} \cdots a_{1n}\\ \vdots & \vdots & \vdots\\ a_{i1} \cdots a_{ik} \cdots a_{in} \end{pmatrix} \\ \vdots & \vdots & \vdots\\ a_{m1} \cdots a_{mk} \cdots a_{mn} \end{pmatrix} \cdot \begin{pmatrix}b_{11} \cdots b_{1j}\\ \vdots\\ b_{k1} \cdots b_{kp}\\ \vdots\\ b_{n1} \cdots b_{np} \end{pmatrix} = \begin{pmatrix}c_{11} \cdots c_{1j} \cdots c_{1p}\\ \vdots\\ c_{i1} \cdots c_{ij} \cdots c_{ip}\\ \vdots\\ c_{m1} \cdots c_{mj} \cdots c_{mp} \end{pmatrix}$$

$$j \text{th column} \qquad ij \text{ entry}$$

Matrix Multiplication/Inversion and Linear Transformations

Let $T: \mathbf{R}^n \to \mathbf{R}^m$ and $U: \mathbf{R}^p \to \mathbf{R}^n$ be linear transformations with matrices A and B. The **composition** is the linear transformation

 $T \circ U \colon \mathbf{R}^{p} \to \mathbf{R}^{m}$ defined by $T \circ U(x) = T(U(x))$.



Fact: The matrix for $T \circ U$ is AB.

Now let $T: \mathbf{R}^n \to \mathbf{R}^n$ be an *invertible* linear transformation. This means there is a linear transformation $T^{-1}: \mathbf{R}^n \to \mathbf{R}^n$ such that $T \circ T^{-1}(x) = x$ for all x in \mathbf{R}^n . Equivalently, it means T is one-to-one and onto.

Fact: If A is the matrix for T, then A^{-1} is the matrix for T^{-1} .

$\underset{\mbox{\sc Example}}{\mbox{Matrix Multiplication/Inversion and Linear Transformations}}$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ scale the x-axis by 2, and let $U: \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation by 90°.

Their matrices are:

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

The composition $T \circ U$ is: first rotate counterclockwise by 90°, then scale the x-axis by 2. The matrix for $T \circ U$ is

$$AB = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}.$$

The inverse of U rotates *clockwise* by 90°. The matrix for U^{-1} is

$$B^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Matrix Inverses

The **inverse** of an $n \times n$ matrix A is a matrix A^{-1} such that $AA^{-1} = I_n$ (equivalently, $A^{-1}A = I_n$).

 2×2 case:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

 $n \times n$ case: Row reduce the augmented matrix $(A \mid I_n)$. If you get $(I_n \mid B)$, then $B = A^{-1}$. Otherwise, A is not invertible.

Solving linear systems by "dividing by A": If A is invertible, then

$$Ax = b \iff x = A^{-1}b.$$

Important If A is invertible, then Ax = b has exactly one solution for any b, namely, $x = A^{-1}b$.

Solving Linear Systems by Inverting Matrices Example

Important If A is invertible, then Ax = b has exactly one solution for any b, namely, $x = A^{-1}b$.

Example

Solve
$$\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} x = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
.

Answer:

$$x = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}^{-1} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \frac{1}{2 \cdot 3 - 1 \cdot 1} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3b_1 - b_2 \\ -b_1 + 2b_2 \end{pmatrix}$$

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds:

scaling $(R_2 = 2R_2)$	row replacement $(R_2=R_2+2R_1)$	$(R_1 \longleftrightarrow R_2)$
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 4 \end{pmatrix} \xrightarrow{} B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 4 \end{pmatrix}$$

You get B by subtracting $2 \times$ the first row of A from the second row.

$$B = EA$$
 where $E = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ (subtract 2× the first row of I_2 from the second row)

.

The Inverse of an Elementary Matrix

Fact: the inverse of an elementary matrix E is the elementary matrix obtained by doing the opposite row operation to I_n .

$$R_{2} = R_{2} \times 2 \qquad R_{2} = R_{2} \div 2 \qquad R_{2} = R_{2} \div 2 \qquad R_{2} = R_{2} + 2R_{1} \qquad R_{2} = R_{2} - 2R_{1} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{ccc} R_1 \longleftrightarrow R_2 & & R_1 \longleftrightarrow R_2 \\ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} & & \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

If A is invertible, then there are a sequence of row operations taking A to I_n :

$$E_r E_{r-1} \cdots E_2 E_1 A = I_n.$$

Taking inverses (note the order!):

$$A = E_1^{-1} E_2^{-1} \cdots E_r^{-1} I_n = E_1^{-1} E_2^{-1} \cdots E_r^{-1}.$$

The Invertible Matrix Theorem

For reference

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.
- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span Rⁿ.
- 10. T is onto.

- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbf{R}^n .
- **15.** Col $A = \mathbf{R}^{n}$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- **19**. dim Nul A = 0.

Learn it!

Subspaces

Definition

A subspace of \mathbf{R}^n is a subset V of \mathbf{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty" "closed under addition" "closed under \times scalars"

Examples:

- Any Span $\{v_1, v_2, \ldots, v_m\}$.
- ▶ The *column space* of a matrix: Col A = Span{columns of A}.
- The *null space* of a matrix: Nul $A = \{x \mid Ax = 0\}$.
- ▶ **R**^{*n*} and {0}

If V can be written in any of the above ways, then it is automatically a subspace: you're done!

Subspaces Example

Example
s
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x + y = 0 \right\}$$
 a subspace?
1. Since $0 + 0 = 0$, the zero vector is in V .
2. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ be arbitrary vectors in V .
• This means $x + y = 0$ and $x' + y' = 0$.
• We have to check if $\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$ is in V .
• This means $(x + x') + (y + y') = 0$.
Indeed:

$$(x + x') + (y + y') = (x + y) + (x' + y') = 0 + 0 = 0,$$

so condition (2) holds.

Subspaces Example, continued

Example
s
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid x + y = 0 \right\}$$
 a subspace?
3. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be in V and let c be a scalar.
• This means $x + y = 0$.
• We have to check if $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$ is in V.
• This means $cx + cy = 0$.
Indeed:

$$cx + cy = c(x + y) = c \cdot 0 = 0.$$

So condition (3) holds.

Since conditions (1), (2), and (3) hold, V is a subspace.

Subspaces Example

Example Is $V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ in } \mathbb{R}^3 \mid \sin(x) = 0 \right\}$ a subspace? 1. Since sin(0) = 0, the zero vector is in V. 3. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ be in V and let c be a scalar. • This means sin(x) = 0. • We have to check if $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$ is in V. This means sin(cx) = 0. This is not true in general: take $x = \pi$ and $c = \frac{1}{2}$. Then $sin(cx) = sin(\pi/2) = 1$. So $\begin{pmatrix} \pi \\ 0 \\ 2 \end{pmatrix}$ is in V but $\frac{1}{2} \begin{pmatrix} \pi \\ 0 \\ 2 \end{pmatrix}$ is not.

Since condition (3) fails, V is not a subspace.

Definition

Let V be a subspace of \mathbb{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in \mathbb{R}^n such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

To check that \mathcal{B} is a basis for V, you have to check two things:

1. \mathcal{B} spans V.

2. \mathcal{B} is linearly independent.

This is what it means to justify the statement " \mathcal{B} is a basis for V."

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

So if you already know the dimension of V, you only have to check one.

Basis of a Subspace Example

Verify that
$$\left\{ \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
 is a basis for $V = \left\{ \begin{pmatrix} x\\y\\z \end{pmatrix}$ in $\mathbb{R}^3 \mid x+y=0 \right\}$.
0. In V : both are in V because $1 + (-1) = 0$ and $0 + 0 = 0$.
1. Span: If $\begin{pmatrix} x\\y\\z \end{pmatrix}$ is in V , then $y = -x$, so we can write it as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -x \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

2. Linearly independent:

$$x \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 0 \implies \begin{pmatrix} x \\ -x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies x = y = 0.$$

If we knew a priori that dim V = 2, then we would only have to check 0, then 1 or 2.

Bases of Col A and Nul A

Parametric vector form for solutions to Ax = 0:

$$x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{basis of } Nul A} \left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}$$

A vector in Nul A: any solution to Ax = 0, e.g., $x = \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}$.

Rank Theorem

Rank Theorem If A is an $m \times n$ matrix, then

rank $A + \dim \operatorname{Nul} A = n =$ the number of columns of A.

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

basis of Col A free variables

In this case, rank A = 2 and dim Nul A = 2, and 2 + 2 = 4, which is the number of columns of A.