Announcements Monday, October 23

- Webwork due next week,
- ► No quiz this week.

Chapter 3

Determinants

Section 3.1

Introduction to Determinants

Orientation

Recall: This course is about learning to:

- Solve the matrix equation Ax = b
 We've said most of what we'll say about this topic now.
- Solve the matrix equation $Ax = \lambda x$ (eigenvalue problem) We are now aiming at this.
- Almost solve the equation Ax = b This will happen later.

The next topic is **determinants**.

This is a completely *magical function* that takes a square matrix and gives you a number.

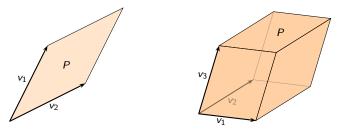
It is a very complicated function the formula for the determinant of a 10×10 matrix has 3,628,800 summands! so we need efficient ways to compute it.

Today is mostly about the *computation* of determinants; in the next lecture we will focus on the theory.

The Idea of Determinants

Let A be an $n \times n$ matrix. Determinants are only for square matrices.

The columns v_1, v_2, \ldots, v_n give you *n* vectors in \mathbb{R}^n . These determine a **parallelepiped** *P*.



Observation: the volume of *P* is zero \iff the columns are *linearly dependent* (*P* is "flat") \iff the matrix *A* is not invertible.

The **determinant** of A will be a number det(A) whose absolute value is the volume of P.

Determinants of 2×2 Matrices $_{\text{Revisited}}$

We already have a formula in the 2×2 case:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

What does this have to do with volumes?

The area of the parallelogram is always |ad - bc|. Note: this shows $det(A) \neq 0 \iff A$ is invertible in

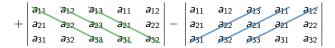
this case.

Here's the formula:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \frac{a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}}{-a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}}$$

How to remember this?

Draw a bigger matrix, repeating the first two columns to the right:



For example,

$$\det \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} =$$

What does this have to do with volumes? Next time.

A Formula for the Determinant

When $n \ge 4$, the determinant is **not that simple to describe**. The formula is recursive:

We need some notation. Let A be an $n \times n$ matrix.

$$A_{ij} = ij$$
th **minor** of A

 $= (n-1) \times (n-1)$ matrix you get by deleting the *i*th row and *j*th column

 $C_{ij} = ij$ th **cofactor** of $A = (-1)^{i+j} \det A_{ij}$

The signs of the cofactors follow a *checkerboard pattern*:

$$\begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix} \qquad \pm \text{ in the } \textit{ij entry is the sign of } C_{\textit{ij}}$$

Definition

The **determinant** of an $n \times n$ matrix A is

$$\det(A) = \sum_{j=1}^{n} a_{1j}C_{1j} = a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}.$$

This formula is called **cofactor expansion** along the first row.

A Formula for the Determinant 1×1 Matrices

This is the beginning of the recursion.

 $det(a_{11}) = a_{11}.$

A Formula for the Determinant 2×2 Matrices

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

The minors are:

$$A_{11} = A_{12} =$$

$$A_{21} = A_{22} =$$

The cofactors are

$$C_{11} = C_{12} = C_{21} = C_{22} =$$

The determinant is

$$\det A = a_{11}C_{11} + a_{12}C_{12} = a_{11}a_{22} - a_{12}a_{21}.$$

A Formula for the Determinant 3×3 Matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

The top row minors and cofactors are:

$$A_{11} = C_{11} =$$

$$A_{12} = C_{12} =$$

$$A_{13} = C_{13} =$$

A Formula for the Determinant Example

$$\det \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 2 \\ 4 & 0 & -1 \end{pmatrix} =$$

Cofactor expasion: Specify point of reference...

Recall: the formula

$$\det(A) = \sum_{j=1}^{n} a_{1j}C_{1j} = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}.$$

is called cofactor expansion *along the first row*. Actually, you can expand cofactors along any row or column you like!

$$\det A = \sum_{j=1}^{n} a_{ij} C_{ij} \text{ for any fixed } i$$
$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij} \text{ for any fixed } j$$

Good trick: Use cofactor expansion along a row or a column with a lot of zeros.

Cofactor Expansion Example

$$A = \begin{pmatrix} 2 & 1 & 0\\ 1 & 1 & 0\\ 5 & 9 & 1 \end{pmatrix}$$

It looks easiest to expand along the third column:

 $\det A =$

Poll

Trick: Expand along the first row

This works for any matrix that is *upper-triangular* (all entries below the main diagonal are zero).

Theorem

The determinant of an upper-triangular matrix is the product of the diagonal entries:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} = a_{11}a_{22}a_{33}\cdots a_{nn}.$$

The same is true for lower-triangular matrices. (Repeatedly expand along the first row.)

Extra: A Formula for the Inverse from §3.3

For 2×2 matrices we had a nice formula for the inverse:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{21} \\ C_{12} & C_{22} \end{pmatrix}.$$

Theorem

This last formula works for any $n \times n$ invertible matrix A:

$$\begin{array}{c} (3,1) \text{ entry} \\ A^{-1} = \frac{1}{\det A} \begin{pmatrix} C_{11} & C_{21} & C_{31} & \cdots & C_{n1} \\ C_{12} & C_{22} & C_{32} & \cdots & C_{n2} \\ C_{13} & C_{23} & C_{33} & \cdots & C_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & C_{3n} & \cdots & C_{nn} \end{pmatrix} = \frac{1}{\det A} (C_{ij})^T$$

Note that the cofactors are "transposed": the (i, j) entry of the matrix is C_{ji} .

The proof uses Cramer's rule. See Dan Margalit's notes on the website for a nice explanation.

A Formula for the Inverse Example

Compute
$$A^{-1}$$
, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
The minors are:

The cofactors are (don't forget to multiply by $(-1)^{i+j}$):

The determinant is (expanding along the first row):

 $\det A =$

Extra: A Formula for the Inverse

Example, continued

Compute
$$A^{-1}$$
, where $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
The inverse is

$$A^{-1} =$$

Check: