Announcements

Monday, October 23

- Webwork due next week,
- No quiz this week.

Chapter 3

Determinants

Section 3.1

Introduction to Determinants

Orientation

Recall: This course is about learning to:

- Solve the matrix equation $A x=b$ We've said most of what we'll say about this topic now.
- Solve the matrix equation $A x=\lambda x$ (eigenvalue problem) We are now aiming at this.
- Almost solve the equation $A x=b$ This will happen later.

The next topic is determinants.
This is a completely magical function that takes a square matrix and gives you a number.
It is a very complicated functionthe formula for the determinant of a 10×10 matrix has $3,628,800$ summands! so we need efficient ways to compute it.

Today is mostly about the computation of determinants; in the next lecture we will focus on the theory.

The Idea of Determinants

Let A be an $n \times n$ matrix. Determinants are only for square matrices.
The columns $v_{1}, v_{2}, \ldots, v_{n}$ give you n vectors in \mathbf{R}^{n}. These determine a parallelepiped P.

Observation: the volume of P is zero \Longleftrightarrow the columns are linearly dependent (P is "flat") \Longleftrightarrow the matrix A is not invertible.

The determinant of A will be a number $\operatorname{det}(A)$ whose absolute value is the volume of P. In particular, $\operatorname{det}(A) \neq 0 \Longleftrightarrow A$ is invertible.

Determinants of 2×2 Matrices

Revisited

We already have a formula in the 2×2 case:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

What does this have to do with volumes?

$$
v_{1}=\binom{2}{0} \quad v_{2}=\binom{1}{3}
$$

The area of the parallelogram is

$$
\text { base } \times \text { height }=2 \cdot 3=\left|\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right)\right| .
$$

The area of the parallelogram is always $|a d-b c|$. If v_{1} is not on the x-axis: it's a fun geometry problem! Note: this shows $\operatorname{det}(A) \neq 0 \Longleftrightarrow A$ is invertible in this case. (The volume is zero if and only if the columns are collinear.) Question: What does the sign of the determinant mean?

Determinants of 3×3 Matrices

Here's the formula:

$$
\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\begin{array}{r}
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
\end{array}
$$

How to remember this?
Draw a bigger matrix, repeating the first two columns to the right:

$$
+\left|\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right|-\left|\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right|
$$

Then add the products of the downward diagonals, and subtract the product of the upward diagonals.
For example,

$$
\operatorname{det}\left(\begin{array}{rrr}
5 & 1 & 0 \\
-1 & 3 & 2 \\
4 & 0 & -1
\end{array}\right)=\left|\begin{array}{rrr}
5 & 1 \\
2
\end{array}\right|=-15+8+0-0-0-1=-8
$$

What does this have to do with volumes? Next time.

A Formula for the Determinant

When $n \geq 4$, the determinant is not that simple to describe. The formula is recursive: you compute a larger determinant in terms of smaller ones.

We need some notation. Let A be an $n \times n$ matrix.
$A_{i j}=i j$ th minor of A

$$
=(n-1) \times(n-1) \text { matrix you get by deleting the ith row and } j \text { th column }
$$

$C_{i j}=i j$ th cofactor of $A=(-1)^{i+j} \operatorname{det} A_{i j}$
The signs of the cofactors follow a checkerboard pattern:

$$
\left(\begin{array}{cccc}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & +
\end{array}\right)
$$

\pm in the $i j$ entry is the sign of $C_{i j}$

Definition

The determinant of an $n \times n$ matrix A is

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

This formula is called cofactor expansion along the first row.

A Formula for the Determinant

1×1 Matrices

This is the beginning of the recursion.

$$
\operatorname{det}\left(a_{11}\right)=a_{11}
$$

A Formula for the Determinant

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

The minors are:

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{cc}
a_{21} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left(a_{22}\right) \quad A_{12}=\left(\begin{array}{cc}
a_{11} 1 & a_{21} \\
a_{21} & a_{22}
\end{array}\right)=\left(a_{21}\right)
\end{aligned}
$$

The cofactors are

$$
\begin{array}{ll}
C_{11}=+\operatorname{det} A_{11}=a_{22} & C_{12}=-\operatorname{det} A_{12}=-a_{21} \\
C_{21}=-\operatorname{det} A_{21}=-a_{12} & C_{22}=+\operatorname{det} A_{22}=a_{11}
\end{array}
$$

The determinant is

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}=a_{11} a_{22}-a_{12} a_{21}
$$

A Formula for the Determinant

3×3 Matrices

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The top row minors and cofactors are:

$$
\begin{aligned}
& A_{11}=\left(\begin{array}{lll}
\begin{array}{ll}
a_{21} & v_{12} \\
a_{21} & a_{21} \\
a_{31} & a_{32}
\end{array} & a_{23}
\end{array}\right)=\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right) \quad C_{11}=+\operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right) \\
& A_{12}=\left(\begin{array}{ccc}
\text { and } \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right) \quad C_{12}=-\operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right) \\
& A_{13}=\left(\begin{array}{lll}
a_{11} M & a_{12} M & a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right) \quad C_{13}=+\operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right) \\
& \operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& =a_{11} \operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right)-a_{12} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right)+a_{13} \operatorname{det}\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
\end{aligned}
$$

The determinant is the same formula as before (verify it yourself)

A Formula for the Determinant

Example

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{rrr}
5 & 1 & 0 \\
-1 & 3 & 2 \\
4 & 0 & -1
\end{array}\right)= & 5 \cdot \operatorname{det}\left(\begin{array}{rrr}
5 \\
-5 & -3 & 2 \\
0 & -1
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{rr}
5 M M O \\
-1 & 2 \\
4 & 2 \\
4 & -1
\end{array}\right) \\
& +0 \cdot \operatorname{det}\left(\begin{array}{rrr}
5 M W M W \\
-1 & 3 & 2 \\
4 & 0 & -5
\end{array}\right) \\
= & 5 \cdot \operatorname{det}\left(\begin{array}{cc}
3 & 2 \\
0 & -1
\end{array}\right)-1 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 2 \\
4 & -1
\end{array}\right)+0 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 3 \\
4 & 0
\end{array}\right) \\
= & 5 \cdot(-3-0)-1 \cdot(1-8) \\
= & -15+7=-8
\end{aligned}
$$

Cofactor expasion: Specify point of reference...

Recall: the formula

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

is called cofactor expansion along the first row. Actually, you can expand cofactors along any row or column you like!

$$
\begin{aligned}
& \operatorname{det} A=\sum_{j=1}^{n} a_{i j} C_{i j} \quad \text { for any fixed } i \\
& \operatorname{det} A=\sum_{i=1}^{n} a_{i j} C_{i j} \quad \text { for any fixed } j
\end{aligned}
$$

Good trick: Use cofactor expansion along a row or a column with a lot of zeros.

Cofactor Expansion

Example

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
5 & 9 & 1
\end{array}\right)
$$

It looks easiest to expand along the third column:

$$
\begin{aligned}
& \operatorname{det} A=0 \cdot \operatorname{det}\binom{\text { don't }}{\text { care }}-0 \cdot \operatorname{det}\binom{\text { don't }}{\text { care }}+1 \cdot \operatorname{det}\left(\begin{array}{ccc}
2 & 1 & \theta \\
1 & 1 & \frac{8}{6} \\
5 \mathrm{M} \text { 9M園 }
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=2-1=1
\end{aligned}
$$

Poll

If you expand repeatedly along the first column, you get

$$
\begin{aligned}
& 1 \cdot \operatorname{det}\left(\begin{array}{rrrrr}
-2 & -3 & 13 & 11 & 1 \\
0 & -1 & -9 & 7 & 18 \\
0 & 0 & 3 & 6 & -8 \\
0 & 0 & 0 & 1 & -11 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)=1 \cdot(-2) \cdot \operatorname{det}\left(\begin{array}{rrrr}
-1 & -9 & 7 & -18 \\
0 & 3 & 6 & -8 \\
0 & 0 & 1 & -11 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \quad=1 \cdot(-2) \cdot(-1) \cdot \operatorname{det}\left(\begin{array}{rrr}
3 & 6 & -8 \\
0 & 1 & -11 \\
0 & 0 & -1
\end{array}\right)=1 \cdot(-2) \cdot(-1) \cdot 3 \cdot \operatorname{det}\left(\begin{array}{cc}
1 & -11 \\
0 & -1
\end{array}\right) \\
& \quad=1 \cdot(-2) \cdot(-1) \cdot 3 \cdot 1 \cdot(-1)=-6
\end{aligned}
$$

The Determinant of an Upper-Triangular Matrix

Trick: Expand along the first row
This works for any matrix that is upper-triangular (all entries below the main diagonal are zero).

Theorem

The determinant of an upper-triangular matrix is the product of the diagonal entries:

$$
\operatorname{det}\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right)=a_{11} a_{22} a_{33} \cdots a_{n n} .
$$

The same is true for lower-triangular matrices. (Repeatedly expand along the first row.)

Extra: A Formula for the Inverse

For 2×2 matrices we had a nice formula for the inverse:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\frac{1}{\operatorname{det} A}\left(\begin{array}{ll}
C_{11} & C_{21} \\
C_{12} & C_{22}
\end{array}\right)
$$

Theorem
This last formula works for any $n \times n$ invertible matrix A :

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{ccccc}
C_{11} & C_{21} & C_{31} & \cdots & C_{n 1} \\
C_{12} & C_{22} & C_{32} & \cdots & C_{n 2} \\
C_{13} & C_{23} & C_{33} & \cdots & C_{n 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & C_{3 n} & \cdots & C_{n n}
\end{array}\right)=\frac{1}{\operatorname{det} A}\left(C_{i j}\right)^{T}
$$

Note that the cofactors are "transposed": the (i, j) entry of the matrix is $C_{j i}$.
The proof uses Cramer's rule. See Dan Margalit's notes (p. 64) on the website for a nice explanation.

A Formula for the Inverse

Example

Compute A^{-1}, where $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$.
The minors are:

$$
\begin{array}{lll}
A_{11}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & A_{12}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & A_{13}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
A_{21}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & A_{22}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & A_{23}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \\
A_{31}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) & A_{32}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & A_{33}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

The cofactors are (don't forget to multiply by $(-1)^{i+j}$):

$$
\begin{array}{lll}
C_{11}=-1 & C_{12}=1 & C_{13}=-1 \\
C_{21}=1 & C_{22}=-1 & C_{23}=-1 \\
C_{31}=-1 & C_{32}=-1 & C_{33}=1
\end{array}
$$

The determinant is (expanding along the first row):

$$
\operatorname{det} A=1 \cdot C_{11}+0 \cdot C_{12}+1 \cdot C_{13}=-2
$$

Extra: A Formula for the Inverse

Compute A^{-1}, where $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$.
The inverse is

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)=-\frac{1}{2}\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right) .
$$

Check:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \cdot-\frac{1}{2}\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

